Printed	Page:-	04
----------------	--------	----

Subject Code: BAS0301A /BASH0301A												
Ro	oll.	No	:									
		П										

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: III THEORY EXAMINATION (2024 - 2025)

Subject: Engineering Mathematics III

Time: 3 Hours Max. Marks: 100

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

- 1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.
- 2. Maximum marks for each question are indicated on right -hand side of each question.
- 3. Illustrate your answers with neat sketches wherever necessary.
- **4.** Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.
- **6.** No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION-A

20

- 1. Attempt all parts:-
- 1-a. The particular integral of the P.D.E $(D^2 7DD' + 12D'^2)z = e^{(x-y)}$ is: (CO1, K3)

(a)
$$\frac{1}{2}e^{x-y}$$

(b)
$$\frac{1}{12}e^{x-y}$$

$$(c) \quad \frac{1}{20} e^{x-y}$$

(d) None of these

1-b.

$$B\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}} + C\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}} + A\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{y}^{2}} + F(\mathbf{x}, \mathbf{y}, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \frac{\partial \mathbf{u}}{\partial \mathbf{y}}) = 0$$

The P.D.E of second order is hyperbolic when (CO1, K2)

(a)
$$C^2 - 4AB = 0$$

(b)
$$C^2 - 4AB > 0$$

(c)
$$C^2 - 4AB < 0$$

(d)
$$B^2 - 4AC < 0$$

1-c.

$$\int_{x}^{x_3} y dx$$

By Simpson's 3/8th rule, the integral . (CO2, K2)

(a)
$$\frac{3h}{8}(y_0 + 3y_1 + 3y_2 + y_3)$$

1-j.	The number of elements in the Power set $P(S)$ of the set $S = \{1, 2, 3\}$ is (CO. K3)							
((a) 4	(c)	8					
((b) 3	(d)	6					
2. Atten	npt all parts:-							
2.a.	Classify the P.D.E: $x^2 \frac{\partial^2 \mathbf{u}}{\partial x^2}$	$+\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = 0.(\text{CO1, K2})$			2			
2.b.	Evaluate $\int_{0.5}^{1.5} \frac{dx}{x}$, by Simp				2			
				K3)				
2.c.	Find the image of $x = 2$ under the	e transformation $w = 1/z$. (CC	13)		2 2			
2.d.	Determine the poles and res	sidues of the function $f(z)$	$= \frac{z}{(z-1)^2}$	$\frac{z^2}{(z+2)}$ (CO4, K3)	2			
2.e.	Find the maximum power of	of 15 in 100! (CO5, K3)			2			
SECTIO	ON-B				30			
3. Answ	er any five of the following:-							
3-a.	Solve: $(2D^2 - 5DD' + 2D'^2)$	z = 24(y - x).(CO1, K3)			6			
3-b.			∂u ∂	$^{2}\mathbf{u}$	6			
	Find the solution of the hear consistent with the physical	t flow in one dimension nature of the problem.	$\frac{\partial \mathbf{t}}{\partial \mathbf{t}} = \mathbf{c}^2 - \mathbf{c}^2$ CO1, K3).	x^2 , which is				
3-c.	Using Newton's divided difference formula, find a polynomial function satisfying the following data:							
	x (6				
	$f(x) = \begin{cases} f(x) & \text{S} \\ \text{Hence find f(1) . (CO2, K3)} \end{cases}$			130				
3-d.					6			
<i>3</i> - u .	Find a real root of the equat three decimal places. (CO2,	K3)			U			
3.e.	Show that the function $u(x,y) = e^{x}$	siny is harmonic. Find its harm	ionic conjugat	e.(CO3, K2)	6			
3.f.	Discuss the nature of singularity of $f(z) = \frac{(z - \sin z)}{z^3}$ at $z = 0.(CO4, K2)$							
3.g.	Statements All cats are dogs (CO5, K2) some pigs are cats. All dogs are tigers Conclusions:)			6			
	1. Some tigers are cats	3. All cats are	_					
	2. Some pigs are tigers	4. Some cats an	re not tigers	8				
	Justify your answer.							

SECTION-C

50

10

10

4. Answer any one of the following:-

4-a.

The vibration of an elastic string is governed by the PDE $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$. The length of the string is π and the ends are fixed. The initial velocity is zero and the initial displacement is $2(\sin x + \sin 3x)$. Find the displacement u(x,t) of the vibrating string at any time t>0. (CO1, K3)

Solve: $\frac{\partial^2 z}{\partial x^2} - 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = e^{(2x+3y)} + \sin(x-2y)$. (CO1, K3) 10 4-b.

5. Answer any one of the following:-

Solve the equation $3x - \cos(x) = 1$, by Newton-Raphson method upto four decimal 5-a. 10 places.(CO2, K3)

Solve the following system of equations by Gauss Elimination method: (CO2, K3) 4x+y+z=4, x+4y-2z=4, 3x+2y-4z=65-b. 10

6. Answer any one of the following:-

6-a. Examine the nature of the function

 $f(x) = \frac{x^3y(x-iy)}{x^6+v^2}$, z not equal to zero and f(0) = 0 in the region including the

origin. (CO3, K3)

Find the transformation which maps the points z = 1, -1, -1 into the points w = i, 0, -i respectively. 10 Also show that the transformation maps the region outside the circle z = 1 into the half space $Re(w) \ge 0$. (CO3, K3)

7. Answer any one of the following:-

Expand $\frac{z}{(z-1)(2-z)}$ in Laurent series valid for (CO4, K2) 7-a. 10

I. |z - 1| > 1

Evaluate by using Cauchy's Residue theorem: $\int_C \frac{(4-3z)}{z(z-1)(z-2)} dz,$ 7-b. 10

where C is the circle |z| = 4.(CO4, K3)

8. Answer any <u>one</u> of the following:-

10 8-a. Solve the following (CO5, K3)

> • A problem is given to three persons P, Q, R whose respective chances of solving it are 2/7, 4/7, 4/9 respectively. What is the probability that the problem is solved?

• Find the probability of getting two heads when five coins are tossed.

8-b. Solve the following (CO5, K3)

10

• Find the inverse of the function f(x) = 4x-3

• Let f(x) = 2x + 1 and $g(x) = x^2$. Determine g o f (x).