Printed Page:- 05		ge:- 05 Subject Code:- BAS0301B Roll. No:	-			
NO	IDA I	INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA	<u> </u>			
		(An Autonomous Institute Affiliated to AKTU, Lucknow)				
		B.Tech SEM: III - THEORY EXAMINATION (2024 - 2025)				
		Subject: Engineering Mathematics III				
Tim	e: 3 H	Hours Max. Marks: 1	100			
Gener	ral In	structions:				
		fy that you have received the question paper with the correct course, code, branch et	tc.			
		estion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice				
		(MCQ's) & Subjective type questions.				
		n marks for each question are indicated on right -hand side of each question. your answers with neat sketches wherever necessary.				
		suitable data if necessary.				
		ly, write the answers in sequential order.				
,		should be left blank. Any written material after a blank sheet will not be				
evalud	ated/ci	checked.				
SECT	TON-	-A	20			
1. Atte	empt a	all parts:-				
1-a.	If	f the particular integral of the PDE $(D^2 + 2DD' + D'^2)z = \cos(x + 2y)$ is	1			
		cos(x+2y) then $k = $ (CO1,K2)				
		1				
	(a)	$\overline{9}$				
		1				
	(b)	8				
		$-\frac{1}{2}$				
	(c)	8				
		$-\frac{1}{2}$				
	(d)	9				
1-b.	T	The P.D.E $^{Z_{xx}} - 5z_{yy} = 0$ is classified as (CO1,K2)	1			
	(a)	Parabolic				
	(b)	Hyperbolic				
	(c)	Elliptical				
	(d)	None of these				
1-c.	T	The inverse Z - Transform of $F(z)=1$ is (CO2,K1)	1			
	(a)	$\delta(\mathbf{k})$				
	(b)	u(k)				
	(c)	1				

(d) None of these 1-d. 1 =is (CO2, K1) $-p^2 \overline{u}$ (a) $p^2 \overline{u}$ (b) ū (c) p^2 (d) The function $f(z) = z^2$ is (CO3,K2) 1 1-e. Analytic except at origin (a) Nowhere Analytic (b) (c) Analytic everywhere (d) None of these Imaginary part of the function z^2 is (CO3,K1) 1-f. 1 (a) (b) $x^2 - y^2x^2 + y^2$ (c) (d) $f(z) = \frac{z}{(z+3)(z-2)^3}$, poles and order of the poles are (CO4,K2) 1 1-g. -3,2 and 1,3 respectively (a) 3, -2 and 1,3 respectively (b) 3,2 and 1,1 respectively (c) None of these (d) If principle part of the Laurent's series contains finite number of terms then 1-h. 1 singularity is called (CO4, K1) Removable (a) Essential (b) Pole (c) (d) None A function $f:X\rightarrow Y$ is one one if (CO5,K1) 1-i. 1 f(x) = f(y) for all $x, y \in X$ (a) f(x) = f(y) implies x = y for all $x, y \in X$ (b) x = y implies f(x) = f(y) for all $x, y \in X$ (c) None of these (d) Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, P = \{1, 2, 5\}, Q = \{6, 7\}.$ Then P \(\Omega\) is: 1-j. 1 (CO5,K2) P

(a)

(b) Q P' (c) (d) Q' 2. Attempt all parts:- $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$ which is 2 Write the solution of the heat flow in one dimension consistent with the physical nature of the problem. (CO1,K1) Determine the Z-transform of $f(k) = 2^k$ for $k \ge 0.(CO2, K3)$ 2 Find the fixed points under the transformation $w = \frac{2z-5}{z+4}$. (CO3,K3) 2 Evaluate: $\int_{2}^{(1+i)} (x^2 - iy) dz$ along the path $y = x^2 \cdot (CO4, K3)$ 2 How many words can be formed by using all letters of the word "CHIRAG"? 2 (CO5,K1)**SECTION-B** 30 3. Answer any five of the following:-Solve: $(D - D' - 1)(D - D' - 2)z = \sin(2x + 3y)$. (CO1,K3) 6 Solve: $r + s - 2t = \sqrt{(2x + y)}$. (CO1,K3) 6 Find the Z-transform of (i) $f(k) = k^2$ (ii) f(k) = k(k-1) (CO2,K3) 6 Find the Fourier transform of the following function: (CO2,K3) 6 $F(t) = \begin{cases} t, & |t| < a \\ 0, & |t| > a \end{cases}$ Show that excosy is a harmonic function. Also find the corresponding analytic function 6 whose real part is given (CO3, K2) Evaluate $\oint_C \frac{e^z}{(z-1)(z-4)} dz$, where C is the circle |z| = 2.(CO4,K3)6 Statements: All men are vertebrates. Some mammals are vertebrates. 6 Conclusions:

3.g.

All men are mammals.

2.a.

2.b.

2.c.

2.d.

2.e.

3-a.

3-b.

3-c.

3-d.

3.e.

3.f.

All mammals are men.

Some vertebrates are mammals.

All vertebrates are men.

Justify your answer. (CO5,K2)

4. Answer any <u>one</u> of the following:-

Use the method of separation of variables to solve the equation: 4-a. 10 $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2} = \frac{\partial \mathbf{u}}{\partial \mathbf{v}} + 2\mathbf{u}. \text{ (CO1,K3)}$

50

4-b. A string is stretched and fastend to two points L apart. Motion is started by 10 $y(x,t) = A\sin \frac{\pi x}{L}$ from which it is released at displacing the string in the form time t=0. Show that the displacement of any point at a displacement of any point at a distance x from one end at time t is given by:

at a distance x from one end at time t is
$$y(x,t) = A\sin \frac{\pi x}{L} \cos \frac{\pi ct}{L}$$
(CO1,K3)

5. Answer any <u>one</u> of the following:-

$$f(x) = \left\{ \begin{array}{ll} \text{cosx,} & 0 < x < a \\ 0, & x > a \end{array} \right.$$

5-b. Using Z - transform, solve the equation: (CO2, K3)
$$y_{k+1} + \frac{1}{4}y_k = \left(\frac{1}{4}\right)^k, \ k \ge 0, y(0) = 0.$$

6. Answer any one of the following:-

6-a. Examine the nature of the function
$$f(z) = \frac{x^3 y (y-i x)}{(x^6 + y^2)}$$
, $z \neq 0$ and $f(0) = 0$ in the region including the origin. (CO3, K3)

6-b. If
$$u - v = (x - y)(x^2 + 4xy + y^2)$$
 and $f(z) = u + iv$ is an analytic function of $z = x + iy$, find $f(z)$ in terms of z. (CO3,K3)

7. Answer any <u>one</u> of the following:-

7-a. Evaluate by using Cauchy's Residue theorem:
$$\int_{C} \frac{(4-3z)}{z(z-1)(z-2)} dz,$$
 where C is the circle $|z| = 3/2$. (CO4,K3)

7-b. Expand
$$\frac{1}{(z^2-3z+2)}$$
 in the region (CO4,K3)

$$(i)|z| < 1$$

 $(ii)1 < |z| < 2$

8. Answer any one of the following:-

- Answer the questions based on the following table. (CO5,K2) 10 8-a. The table gives the production of major agricultural products in Million Tonnes (MT).
 - 1. Which agro product witnessed the highest growth rate in production from 1997 to 2000.
 - 2. Pulses production in 1998 is what percent of the total production of rice in the given 4-year period?
 - 3. By what percent is the average wheat production more than the average sugar cane production for the given 4-year period?
 - 4. What is the simple annual growth rate of wheat from 1997-2000?
 - 5. What would be the actual production of wheat in 2001 if the growth in 2001

is the same as the average growth for the period?

Year	Wheat	Rice	Sugar cane	Pulses
1997	100	91	15	71
1998	120	88	18	75
1999	125	97	21	79
2000	131	107	25	88

10

- The probability that machine A will be performing an usual function in 5 years 8-b.
 - time is $\frac{1}{4}$, while the probability that machine B will be operating usually at the

end of the same period is $\frac{1}{3}$. Find the probability in the following cases that in 5 years time: (CO5,K3)

- Both machines will be performing an usual function
- *Neither will be operating*
- Only machine *B* will be operating iii.
- At least one of the machines will be operating iv.