Printed Page:- 03			et Code:- BBT0303				
			No:				
N	MOID	DA INSTITUTE OF ENGINEERING AND TE	ECHNOLOGY, GREATER NOIDA				
		(An Autonomous Institute Affiliated	to AKTU, Lucknow)				
	B.Tech						
		SEM: III - THEORY EXAMINATI Subject: Genetics and Molec					
Tim	e: 3 H	Hours	Max. Marks: 100				
General Instructions:							
		fy that you have received the question paper wi					
		estion paper comprises of three Sections -A, B,	, & C. It consists of Multiple Choice				
	•	(MCQ's) & Subjective type questions. m marks for each question are indicated on rig	abt hand side of each question				
		e your answers with neat sketches wherever ne					
		suitable data if necessary.					
5. Pre	ferabi	bly, write the answers in sequential order.					
		t should be left blank. Any written material afte	er a blank sheet will not be				
evalud	ited/ci	checked.					
SECT	ION-	N-A	20				
1. Atte	empt a	all parts:-					
1-a.							
	(a)	Telomeres					
	(b)	Centromeres					
	(c)	Chromatids	Y				
	(d)	Genes					
1-b.	K	Karyotyping is used to detect: (CO1, K1)	1				
	(a)	Gene mutations					
	(b)						
	(c)	Protein malfunctions					
	(d)						
1-c.	In	In Griffith's experiment, what organism was us	sed? (CO2, K1)				
	(a)	Mice and Streptococcus pneumoniae	· ,				
	(b)						
	(c)	Bacteriophage					
	(d)	• •					
1-d.	` ,	What radioactive element did Hershey and Cha	ase use to label DNA? (CO2, K1)				
	(a)	Carbon-14					
	(b)						
	(c)	Sulfur-35					

	(d)	Hydrogen-3		
1-e.	Which part of the DNA does RNA polymerase bind to initiate transcription? (CO3, K1)		1	
	(a)	Terminator		
	(b)	Promoter		
	(c)	Enhancer		
	(d)	Operator		
1-f.	In eukaryotes, transcription occurs in the: (CO3, K1)			
	(a)	Cytoplasm		
	(b)	Nucleus		
	(c)	Mitochondria		
	(d)	Ribosomes		
1-g.	In positive regulation, the regulatory protein acts as: (CO4, K1)			
	(a)	A repressor		
	(b)	An activator		
	(c)	A terminator		
	(d)	A helicase		
1-h.	Post-transcriptional regulation primarily affects: (CO4, K1)			
	(a)	DNA replication		
	(b)	RNA processing		
	(c)	Protein folding		
	(d)	Ribosome assembly		
1-i.	T	he law of independent assortment applies to: (CO5, K1)	1	
	(a)	Linked genes		
	(b)	Genes on the same chromosome		
	(c)	Genes on different chromosomes		
	(d)	Homologous chromosomes		
1-j.	T	he formula for chi-square is: (CO5, K1)	1	
	(a)	(O+E)/2		
	(b)	$(O-E)^2/E$		
	(c)	O^2+E^2		
	(d)	(O-E)/(O+E)		
2. Att	empt	all parts:-		
2.a.	D	befine the principles of Mendelian genetics. (CO1, K1)	2	
2.b.	E	xplain the function of centromeres in chromosome stability. (CO2, K1)	2	
2.c.	W	/hat are Okazaki fragments? (CO3, K1)	2	
2.d.	В	reak down the structure of a prokaryotic promoter region. (CO4, K1)	2	

2.e.	Classify the types of gene regulation in prokaryotes. (CO5, K1)	2
SECTIO	<u>N-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Outline the features of multiple alleles and their inheritance patterns. (CO1, K2)	6
3-b.	Recite the process of linkage analysis in genetic studies. (CO1, K2)	6
3-c.	Explain the steps involved in preparing a karyotype and its diagnostic applications. (CO2, K1)	6
3-d.	Summarize the major types of mutations and their effects on proteins. (CO2, K2)	6
3.e.	Break down the steps of Avery, McLeod, and McCarty's experiment and explain how they confirmed DNA as genetic material. (CO3, K3)	6
3.f.	Break down the significance of wobble pairing in translation. (CO4, K3)	6
3.g.	Categorize the types of transcription factors and analyze their specific functions. (CO5, K4)	6
SECTIO	<u>N-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Define the steps of the chi-square test and explain how it is used to verify genetic ratios. (CO1, K2)	10
4-b.	Label the mechanisms of sex determination in humans, birds, and insects. (CO1, K2)	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Contrast the mechanisms of base excision repair and nucleotide excision repair. (CO2, K2)	10
5-b.	Demonstrate the steps involved in using FISH to diagnose sex chromosome aneuploidy. (CO2, K2)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Illustrate the stages of PCR and analyze its applications in biotechnology. (CO3, K3)	10
6-b.	Eukaryotic DNA replication is similar to bacterial replication but differs in several aspects. Explain these differences. (CO3, K3)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Analyze the mechanisms of transcription in eukaryotes, focusing on the role of transcription factors. (CO4, K4)	10
7-b.	Illustrate the pathway of mRNA translation from initiation to termination in eukaryotes. (CO4, K4)	10
8. Answe	er any <u>one</u> of the following:-	
8-a.	Simplify the process of feedback inhibition in gene regulation and analyze its significance. (CO5, K4)	10
8-b.	Categorize the various mechanisms of post-transcriptional regulation and analyze their contributions to gene expression. (CO5, K4)	10