Printed Page:	:- 04	Subject Coo	le:- BCSI	BS0306		
		Koll. No.				
NOIDA	INSTITUTE OF ENGINEERING A	AND TECHN	NOLOGY	, GREA	TER N	<u> </u>
	(An Autonomous Institute Af					
	B.T		(2024 2	005		
	SEM: III - THEORY EXAM		•	•		
Time: 3 Ho	Subject: Formal Langua	ige & Autom	ata Theor	ТУ	Max 1	Marks: 100
General Instr					Widh. I	viaiks. 100
IMP: Verify t	that you have received the question p	paper with the	e correct	course,	code, br	anch etc.
_	tion paper comprises of three Section	ıs -A, B, & C	. It consis	sts of Mi	ıltiple C	<i>'hoice</i>
	ICQ's) & Subjective type questions.	1 1 1 1	7 . 7	<i>C</i> 1	. •	
	marks for each question are indicate your answers with neat sketches whe	-		of each	question	<i>1</i> .
-	itable data if necessary.	rever necessi	ıry.			
	, write the answers in sequential ora	ler.				
•	hould be left blank. Any written mate		olank shee	et will no	ot be	
evaluated/che	ecked.					
				N		
SECTION-A	<u> </u>			0	K	20
1. Attempt al	l parts:-					
1-a. The	e transition function δ of DFA is		_ . (CO1, K1	1)	1
(a)	δ: Q × Σ → 2Q					
(b)	δ: Q×q0→ Q					
(c)	$\delta: Q \times \Sigma \to Q$					
(d)	δ: Q×q0→ F					
1-c. Syn	mbol does not belong t	o CFG.	(CO2,	K1)		1
•	Terminal Symbol		, ,	,		
, ,	End Symbol					
	Start symbol					
	Non Terminal					
, ,	anguage L is accepted by a FSM, if	it is		(CO1,	K1)	1
	CFL			(,	,	
` /	CSL					
. ,	Recursive					
` ,	Regular					
. ,	ore than one Parse tree can be genera	ted from a sa	ime sente	nce The	Gramn	nar 1
	ich has this property are known as _			O2, K1)	Crumin	1
	Ambiguous			ŕ		
` ,	5					

	(b) (c)	Unambiguous Ambiguous and Unambiguous	
	(d)	Intersection	
1-e.	T	he transition function of Turing machine is (CO3, K1)	1
	(a)	$\delta: Q X \Gamma \longrightarrow Q X \Gamma X \{L,R\}$	
	(b)	$\delta: Q X \Gamma \longrightarrow Q X \{L,R\}$	
	(c)	$\delta: Q \times (\Sigma \cup {\lambda}) \times \Gamma \longrightarrow Q$	
	(d)	$\delta : Q \times (\Sigma \cup {\lambda}) \times \Gamma \longrightarrow Q$	
1-i.	T	he following statement is true. (CO5, K1)	1
	(a)	NP-complete problems are a subset of NP-Hard problems.	
	(b)	NP-Hard problems are a subset of NP-complete problems.	
	(c)	NP-complete and NP-Hard problems are the same.	
	(d)	NP-complete problems can only be solved in polynomial time.	
1-f.	R	ecursively Enumerable languages can be accepted by (CO3,	1
	K	1)	
	(a)	FSM	
	(b)	TM	
	(c)	DFA	
	(d)	PDA	
1-j.		problem which is both and said to be NP complete.	1
	(a)	NP, P	
	(b)	NP, NP hard	
	(c)	P, P complete	
	(d)	None of the mentioned	
1-g.	T	he statement is correct. (CO4, K1)	1
	(a)	A language 'L' is decidable if it is recursive language.	
	(b)	A language 'L' is decidable if it is recursive enumerable language.	
	(c)	A language 'L' is undecidable if it is recursive language.	
	(d)	A language 'L' is not undecidable if it is recursive enumerable language.	
1-h.	Н	alting problem is an example for (CO4, K1)	1
	(a)	Decidable problem	
	(b)	undecidable problem	
	(c)	complete problem	
	(d)	traceable problem	
2. Atte	empt a	all parts:-	
2.a.	C	ompare Non Deterministic Finite automata and Deterministic Finite Automata. (CO1, K2)	2

2.b.	Explain the term "Church-Turing Thesis". (CO4, K2)	2
2.c.	Define the term "Context-Free Grammar" with an example. (CO2, K1)	2
2.e.	Explain the term P Class and NP Classe in brief. (CO5, K2)	2
2.d.	Define the term "Turing Machine". also List out the applications of Turing Machine. (CO3, K1)	2
SECTIO	<u>DN-B</u>	30
3. Answ	er any <u>five</u> of the following:-	
3-a.	Explain the classification of formal languages into four types as per the Chomsky Hierarchy, providing examples for each type. (CO1, K2)	6
3-c.	Compare the terms Greibach Normal Forms and Chomsky Normal Forms with their examples. (CO2, K2)	6
3-b.	Design a DFA over alphabet $\Sigma = \{0,1\}$ which accepts the set of strings either start with 01 or end with 01. (CO1, K3)	6
3-d.	Construct a PDA which accepting the set of all strings over {a,b} with equal number of a's and b's. (CO2, K3)	6
3.e.	Construct a Turing Machine that recognizes the language of all strings of even length over alphabet {a,b}. {CO3, K3}	6
3.g.	State Cook's Theorem and define the concept of NP-completeness in computational complexity theory. (CO5, K1)	6
3.f.	Define a Universal Turing Machine (UTM) and explain its key components (CO4, K2)	6
SECTIO	<u>ON-C</u>	50
4. Answ	er any <u>one</u> of the following:-	
4-a.	Construct the following: (CO1, K3) (i) A DFA for the language $L = \{ (01)^i \ 1^{2j} \ i >= 1, j >= 1 \}$. (ii) A NFA for the language $L =$ all strings over $\{0, 1\}$ that have at least two consecutive 0's or 1's.	10
4-b.	Define Definition of Regular Expression. Write the regular expression for the language $L=\{a^n\ b^m\ /\ n>=4,\ m<=3\}$. also Construct an equivalent FA for the given regular expression $(0+1)*(00+11)(0+1)*$. (CO1, K3)	10
5. Answ	er any <u>one</u> of the following:-	
5-a.	Explain the term "Ambigious Grammar". Let G be CFG: (CO2, K3) S> AB / aaB A> a / Aa B> b for the string "aab" find: (i) left most derivation (ii) rightmost derivation (iii) Show that the following grammar is ambiguous.	10
5-b.	State Pumping Lemma for Context-Free Languages. Prove that language $L = \{a^n \}$	10

	$b^n c^n / n > = 0$ } is not context free language. also List the closure properties of Context-Free Languages (CFLs) and provide examples for each property. (CO2, K2)	
6. Answe	er any <u>one</u> of the following:-	
б-а.	Define a Non-Deterministic Turing Machine (NDTM) and a Deterministic Turing Machine (DTM). State the formal equivalence between NDTMs and DTMs. (CO3, K1)	10
6-b.	Explain Formal Definition of Turing Machine. With a neat diagram, explain the working of a Turing Machine. Construct a Turing Machine that accepts the language of all strings which contain "aba" as a substring. (CO3, K3)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Design and explain the process of converting a Turing machine into a Universal Turing Machine (UTM). Provide a detailed description of how a UTM simulates the behavior of a given Turing machine with an example. (CO4, K3)	10
7-b.	Define recursive languages and recursively enumerable languages. Do you agree that every recursive language is also a recursively enumerable language? Justify your answer with proper reasoning and examples. (CO4, K4)	10
8. Answe	er any <u>one</u> of the following:-	
8-a.	Explain the concept of NP-completeness and Explain following terms: (CO5, K2) (i) Satisfiability Problem (SAT) (ii) Vertex Cover (iii) Traveling Salesman Problem (TSP). Describe the importance of these problems in real-world applications.	10
8-b.	Explain the relationship between class P, NP, NP-complete and NP hard problem with example of each class. (CO5, K2)	10