Printed Page:- 04		Subject Code Roll. No:	:- BCSE	0301				
		TOIL TOIL						
NOII	』 DA INSTITUTE OF ENGINEERING AN	ND TECHNO	OLOGY.	GRE	ATEI	R NC)ID <i>F</i>	<u>——</u> 1
	(An Autonomous Institute Affi							
	B.Tec							
	SEM: III - THEORY EXAMI	,		25)				
Time: 3	Subject: Data Structure	es and Algori	ithm- I		M	ov N	/Lorlz	s: 100
	nours estructions:				1V13	ax. IV	Taik	s. 100
	fy that you have received the question pa	per with the	correct o	course,	code	z, brc	anch	etc.
-	uestion paper comprises of three Sections							
Questions	(MCQ's) & Subjective type questions.							
	ım marks for each question are indicated	-		of each	ques	stion.	•	
	te your answers with neat sketches where	ever necessar	у.					
	suitable data if necessary. bly, write the answers in sequential order	r						
	et should be left blank. Any written materi		ank shee	t will n	ot be	?		
evaluated/	•	ien egrer er ere	silve Silve C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
SECTION	<u>N-A</u>				×			20
1. Attempt	t all parts:-			1				
	Which asymptotic notation provides the t	tightest boun	d on the	runtim	e of	an		1
	algorithm? (CO1,K1)							
(a)								
(b)								
(c)								
(d)	Little Oh							
1-b.	For the recurrence $T(n) = 3T(\frac{n}{3}) + nlogn$, what is the	time cor	nplexi	ty? ((CO1.	K 1)	1
(a)		,		1	,	,	,	
(b)								
(c)								
(d)								
1-c.	What is the index formula for accessing a	an element in	a 2-D a	rray w	ith 4	rows	anc	i 1
	5 columns (row-major)? (CO2,K1)			J				
(a)	$(i\times 5+j)$							
(b)	$(i\times 4+j)$							
(c)								
(d)								
• •	How many comparisons are needed to sea	arch in a sort	ted array	of 100	00 ele	emen	its	1

	us	sing Binary Search? (CO2,K1)	
	(a)	At most 9	
	(b)	At most 10	
	(c)	At most 11	
	(d)	Exactly 10	
l-e.		What is the primary disadvantage of a singly linked list compared to an array? CO3, K1)	1
	(a)	Dynamic size	
	(b)	Slow access time	
	(c)	Requires more memory	
	(d)	Simple structure	
1-f.	Е	ach node in a polynomial linked list contains: (CO3, K1)	1
	(a)	Coefficient and exponent	
	(b)	Only coefficients	
	(c)	Only exponents	
	(d)	Degree of the polynomial	
l-g.	Е	xplain the disadvantage of recursion in solving large problems. (CO4,K1)	1
	(a)	Memory overhead	
	(b)	Simplified logic	
	(c)	Faster execution	
	(d)	Less readable code	
l-h.		What does the following stack operation output? Push(1), Push(2), Push(3), Pop(), op(), Push(4), Pop()? (CO4,K3)	1
	(a)	1	
	(b)	2	
	(c)	3	
	(d)	4	
l-i.		Which of the following is a common application of the Divide and Conquer oproach in numerical analysis? (CO5, K1)	1
	(a)	Numerical integration	
	(b)	Numerical differentiation	
	(c)	Solving differential equations	
	(d)	All of the above	
l-j.		What is the time complexity of the Divide and Conquer algorithm for solving the lerge Sort problem? (CO5,K1)	1
	(a)	$O(n \log n)$	
	(b)	$O(n^2)$	
	(c)	O(n)	

2. Attempt all parts:-						
2.a.	Calculate the bound of the following functions: (CO1,K2)	2				
	1. Find the upper bound: $f(n) = 5n^2$					
	2. Find the Θ bound for $f(n) = \frac{n^2}{n} - \frac{n}{2}$					
2.b.	Consider array A[8][6], stored in row-major order . Find the address of element A[3][5]. Base address is 2000 and element size is 4 bytes. (CO2,K2)	2				
2.c.	Mention any two advantages of linked list over arrays. (CO3,K1)	2				
2.d.	Mention the Underflow and Overflow condition in a stack. (CO4,K2)	2				
2.e.	Elaborate Task Scheduling Problem. (CO5,K1)	2				
SECTIO	<u>ON-B</u>	30				
3. Answer any <u>five</u> of the following:-						
3-a.	Elaborate Asymptotic notations (Big O, Big Θ , Big Ω) and explain their significance in analyzing algorithms. (CO1,K1)	6				
3-b.	Solve the following recurrence relation using Master Method: (CO1,K3) $T(n) = 6T(\frac{n}{3}) + n^2 \log n$	6				
3-c.	Consider the following Array: [4,9,1,7,11,17,6]. Perform linear search on the above data and give the algorithm/Program to give the index of element '11' in the array. (CO2,K3)	6				
3-d.	Write an algorithm/Program to represent the sparse matrix as a Linked List. (CO2,K2)	6				
3.e.	Write an algorithm/Program to insert and delete a node at a given position in a doubly circular linked list. (CO3,K1)	6				
3.f.	Pen down the algorithm to implement stack using linked lists. Compare their performance in terms of time and space complexity with array implementation. (CO4,K2)	6				
3.g.	Briefly elaborate the "Greedy Techniques" method to solve a problem. Write an algorithm to solve the Fractional Knapsack with the help of an example. (CO5,K2)	6				
SECTIO	<u>ON-C</u>	50				
4. Answe	er any <u>one</u> of the following:-					
4-a.	Solve the recurrence relation using Iteration method: (CO1, K3) $T(n) = \begin{cases} 3T(n-1), & \text{if } n > 0 \\ 1, & \text{otherwise} \end{cases}$	10				
4-b.	Solve the recurrence relation using Recursion-Tree method. (CO1, K3) $T(n) = T(\frac{n}{4}) + T(\frac{n}{2}) + n^2$	10				

O(log n)

(d)

5. Answer any one of the following:-5-a. Apply insertion sort on the given array A = [30,50,10,60,20,40,70]. Give an 10 appropriate algorithm for the same problem and also do time and space complexities analysis for the algorithm you will give. (CO2,K3) 5-b. Write a Program to insert and delete an element at a given position in an Array. 10 (CO2,K2)6. Answer any one of the following:-6-a. How to represent the Circular Linked List using an Array. Write an 10 algorithm/Program to insert an element at the end of circular linked list. (CO3,K3)6-b. Discuss Doubly Linked List. Write an algorithm/Program to insert a single node at 10 a given position in a doubly linked list. (CO3,K2) 7. Answer any one of the following:-7-a. Discuss Circular Queue. Implement Circular Queue using Array. Also write an 10 algorithm/program to insert the element at the front and rear end of the queue.(CO4,K3) 7-b. Convert the given Infix expression into Prefix expression using stack 10 implementation: (CO4,K2) ((H*(((A+((B+C)*D))*F)*G)*E))+J) following:-8. Answer any one of the following:-Pen down the algorithm to implement the Quick Sort. Perform the Quick sort on 8-a. 10 the following data: [23,11,5,15,68,31,4,17]. Also explain how partitioning work in quick sort. (CO5, K2) Elaborate Activity Selection Problem and solve it for the following data: Start 8-b. 10 times: [1,2,3,8,10,11], Finish times: [3,5,9,10,12,14. Use the greedy algorithm to determine the maximum number of non-overlapping activities and describe the algorithm and derive its time complexity. (CO5,K2) REG:IU