Printed Pag	ge:- 04	Subject Code:- BEC0301 Roll. No:
NOID	(An Autonomous Institute A	AND TECHNOLOGY, GREATER NOIDA ffiliated to AKTU, Lucknow) Tech
	SEM: III - THEORY EXA	
		l System Design
Time: 3 F		Max. Marks: 100
General Ins		paper with the correct course, code, branch etc.
• •	•	ons -A, B, & C. It consists of Multiple Choice
_	(MCQ's) & Subjective type questions.	· · · · · · · · · · · · · · · · · · ·
		ted on right -hand side of each question.
	e your answers with neat sketches whe	erever necessary.
	suitable data if necessary. ly, write the answers in sequential ord	der.
v	should be left blank. Any written mat	
evaluated/c	hecked.	
SECTION-A		20
1. Attempt all parts:-		
1-a. B	Bubble input AND gate is Equivalent t	to (CO1,K1) 1
(a)	NAND	
(b)	NOR	
(c)	XOR	
(d)	AND	
	n four-variable K-map simplification, erm with (CO1,K1)	a group of eight adjacent ones leads to a 1
(a)	one literal	
(b)	two literal	
(c)	three literal	
(d)	four literal	
1-c. V	Which One is not the outcome of mag	nitude comparator? (CO2,K1)
(a)	a > b	
(b)	a - b	
(c)	a < b	
(d)	a = b	
1-d. T	The demultiplex means	(CO2,K1) 1
(a)	One into many	
(b)	Many into one	

	(c)	Distributor	
	(d)	One into many as well as Distributor	
1-e.	Ir	which flip flop the present input will be the next output? (CO3,K1)	1
	(a)	J-K	
	(b)	D	
	(c)	T	
	(d)	S-R	
1-f.	T	he basic latch consists of (CO3,K1)	1
	(a)	Two inverters	
	(b)	Two comparators	
	(c)	Two amplifiers	
	(d)	Two adders	
1-g.	The primary advantage of asynchronous circuits is: (CO4,K1)		
	(a)	Speed	
	(b)	Simplicity	
	(c)	Power consumption	
	(d)	All of the above	
1-h.	A	4-bit synchronous up-counter can count from 0 to: (CO4,K1)	1
	(a)	7	
	(b)	15 31	
	(c)	31	
	(d)	63	
1-i.	W	Which is the volatile memory? (CO5,K1)	1
	(a)	ROM	
	(b)	RAM	
	(c)	PROM	
	(d)	EPROM	
1-j.	W	Which is not the PLD? (CO5,K1)	1
	(a)	MUX	
	(b)	PROM	
	(c)	PAL	
	(d)	PLA	
2. Att	empt	all parts:-	
2.a.	E	xplain the Demorgan's Theorem. (CO1,K2)	2
2.b.	Ir	nplement 4*1 MUX using 2*1 Mux. (CO2,K2)	2
2.c.	D	riscuss the all types of triggering method used for F/Fs. (CO3,K2)	2
2.d.	D	befine static and dynamic hazards in combinational circuits. (CO4,K2)	2

2.e.	Compare EFROM. (CO3,K2)	2
SECTIO	<u>ON-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Find the canonical SOP and POS form expressions of F= AB'+CD (CO1,K3)	6
3-b.	Implement basic gates using only NAND gates. (CO1, K3)	6
3-c.	Design a 4 bit binary to gray code converter. (CO2,K3)	6
3-d.	Design a 1-digit BCD Adder using 7483 ICs. (CO2,K3)	6
3.e.	Convert a T F/F into D F/F. (CO3,K3)	6
3.f.	Design MOD-5 Asynchronous counter. (CO4,K3)	6
3.g.	Compare PROM, PAL, and PLA in details. CO5,K3)	6
SECTIO	<u>ON-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	What is Hamming code? Construct the Hamming code for the data 1010 with (CO1,K4)	10
	a. even parity b. odd parity	
4-b.	Minimize the following function by K-Map and also perform the NAND implementation of the simplified function. $F(w,x,y,z) = \sum_{i=0}^{\infty} m(1,4,8,9,13,14,15) + d(2,3,11,12) \qquad (CO1,K4)$	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	What is multiplexer? Implement the function using 8:1 multiplexer. $F(A,B,C,D) = \sum m(0, 2, 3, 6, 8, 9, 11, 12, 14)$ (CO2,K4)	10
5-b.	Design and implement a 2-bit magnitude comparator. (CO2,K4)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Differentiate between: (a) Combinational and sequential circuits. (b) Latches and flip flops (c) Ring and Twisted ring counters. (CO3,K4)	10
6-b.	Derived the characteristic equation of JK and T F/Fs. (CO3,K4)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Design a synchronous sequential circuit using JK filp-flops for the given state diagram. (CO4, K4)	10

Page 3 of 4

7-b. Define Hazards in combinational circuits and design hazard-free circuit for the following Boolean function, (CO4,K4)

 $F(A, B, C, D) = \sum m (0, 2, 6, 7, 8, 9, 10, 11)$

- 8. Answer any one of the following:-
- 8-a. Implement the following Boolean functions using PROM and PLA. (CO5,K4) 10 $A(X,Y,Z)=\sum m(2,4,7)$, $B(X,Y,Z)=\sum m(3,4,6)$.
- 8-b. Draw the block diagram of PLA and explain the function of each blocks. (CO5,K3)