Printed Page:- 04		e:- 04	Subject Code:- BME0	0302			
			Roll. No:				
3.	IOID	A DIGHTEUTE OF ENGINEEDING	ND TECHNOLOGY	CDEAT	ED NO		
N	NOID	A INSTITUTE OF ENGINEERING A			ER NO	IDA	
		(An Autonomous Institute Af B.Te		KHOW)			
		SEM: III - THEORY EXAN		25)			
		Subject: Fluid Mech	· ·				
Time	e: 3 H			-	Max. M	arks	: 100
Genera	al Ins	tructions:					
		that you have received the question p	•				etc.
	_	stion paper comprises of three Section	as -A, B, & C. It consist	ts of Muli	tiple Ch	oice	
		MCQ's) & Subjective type questions.	d on wight hand side	of analy as	. agti an		
		n marks for each question are indicate your answers with neat sketches when	•	oj each qi	iesiion.		
		ruitable data if necessary.	ever necessary.				
		ly, write the answers in sequential ord	er.				
		should be left blank. Any written mate		t will not	be		
evalua	ited/c	hecked.					
				N			
SECT		-A all parts:-					20
	•	•	(171)) -			1
1-a.		What is fluid mechanics used for? (CO)		1:1 61 :1	1		1
	(a)	Fluid mechanics enables to compreh	end the behaviour of s	solid fluid	s under	pres	sure
	(b)	None of the mentioned					
	(c)	Fluid mechanics enables to comprehes & atmospheric conditions	end the behaviour of f	luids und	er a var	iety (of
		-	and the behaviour of f	luide und	or vorio	N11.C	
	(d) Fluid mechanics enables to compretemperatures only		iena me benaviour or i	Tutus und	ei vaiio	us	
1 h	_		s at most what will you	, aall hi a (lomoin	of	1
1-b.		a person studies about a fluid which i audy? (CO1,K2)	s at rest, what will you	i can ms (ıomam	OI	1
		Fluid Dynamics					
	(a)	Fluid Mechanics					
	(b)						
	(c)	Fluid Statics					
	(d)	Fluid Kinematics					_
1-c.		n which method of fluid flow analysis oint? (CO2,K2)	do we describe the mo	tion para	meters a	ıt a	1
	(a)	Langragian method					
	(b)	Eulerian Method					
	(c)	Control volume analysis					
	(d)	None of the mentioned					

1-d.		What will be the shape of the path-line for an one-dimensional flow be like? CO2,K1)	1
	(a)	Straight line	
	(b)	Parabolic	
	(c)	Hyperbolic	
	(d)	Elliptical	
1-e.		Which among the following is a device that converts a laminar flow into a urbulent flow (CO3,K1)	1
	(a)	Dead Weight Gauge	
	(b)	Vacuum Gauge	
	(c)	Turbulator	
	(d)	Ionization Gauge	
1-f.	I	How does a turbulent boundary layer produce swirls? (CO3,K2)	1
	(a)	Due to random motion	
	(b)	Collision of molecules	
	(c)	Due to eddies	
	(d)	Due to non-uniform cross section	
1-g.	V	Which of these statements hold true? (CO4,K1)	1
	(a) syst	Momentum conservation is applicable to neither individual directions nor the wholem	le
	(b)	Momentum conservation is applicable to the whole system but not individually	
	(c)	Momentum conservation is applicable to both individual directions and the whole	
	syst		
		Momentum conservation is applicable only to the three directions individually	
1-h.	ľ	Momentum is a quantity (CO4,K2)	1
	(a)	Scalar	
	(b)	Vector	
	(c)	Infinite	
	(d)	Zero	
1-i.	7	Γurbomachines work under (CO5,K1)	1
	(a)	Newtons first law	
	(b)	Newtons second law	
	(c)	Newtons third law	
	(d)	Kepler's law	
1-j.	T	the main function of centrifugal pumps are to (CO5,K2)	1
	(a)	Transfer speed	
	(b)	Transfer pressure	
	(c)	Transfer temperature	

(0	I) Transfer energy	
2. Attemp	pt all parts:-	
2.a.	What is momentum equation? (CO1,K1)	2
2.b.	Expain One, two and three dimensional flows (CO2,K1)	2
2.c.	What is force of buoyancy? (CO3,K2)	2
2.d.	Give example for a low head, medium head and high head turbine. (CO4,K2)	2
2.e.	What does indicator diagram indicates? (CO5,K2)	2
SECTIO	<u>N-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Explain the phenomenon of capillarity. Obtain an expression for capillary rise of a liquid. (CO1,K3)	6
3-b.	What is the difference between dynamic viscosity and kinematic viscosity? State their units of measurements. (CO1,K1)	6
3-c.	Describe with the help of sketch the construction, operation and use of Pitot-static tube. (CO2,K2)	6
3-d.	What is velocity potential? Also derive the Laplace equation for velocity potential. (CO2,K3)	6
3.e.	What do you understand by the terms : Major energy loss and minor energy losses in pipes ? (CO3,K2)	6
3.f.	Define the following non-dimensional numbers: Reynold's number, Froude's number and Mach's number. What are their significances for fluid flow problems? (CO4,K1)	6
3.g.	What do you understand by characteristic curves of a pump? What is the significance of the characteristic curves? (CO5,K2)	6
SECTIO	<u>N-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Distinguish between: (i) Steady flow and un-steady flow, (ii) Uniform and non-uniform flow, (iii) Compressible and incompressible flow, (iv) Rotational and irrotational flow, (v) Laminar and turbulent flow. (CO1,K1)	10
4-b.	The velocity vector in a fluid flow is given $V = 4x^3 i - 10x^2 yj + 2tk$. Find the velocity and acceleration of a fluid particle at $(2, 7, 3)$ at time $t = 7$. (CO1,K3)	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	What is a venturimeter? Derive an expression for the discharge through a venturimeter. (CO2,K3)	10
5-b.	Derive Bernoulli's equation for the flow of an incompressible frictionless fluid from consideration of momentum. (CO2,K3)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Derive on the basis of dimensional analysis suitable parameters to present the thrust developed by a propeller. Assume that the thrust P depends upon the	10

	sound in the medium C. (CO3,K3)	
6-b.	Derive the expression for head loss in pipe flow due to friction. (CO3,K3)	10
7. Answe	er any one of the following:-	
7-a.	What is a draft-tube? Why is it used in a reaction turbine? Describe with sketch two different types of draft-tubes. (CO4,K2)	10
7-b.	A Pelton turbine develops 3000 kW under a head of 300 m. The overall efficiency of the turbine is 83%. If speed ratio = 0.46, $C_v = 0.98$ and specific speed is 16.5, then find: (i) Diameter of the turbine, and (ii) Diameter of the jet. (CO4,K3)	10
8. Answe	er any one of the following:-	
8-a.	Define indicator diagram. How will you prove that area of indicator diagram is proportional to the work done by the reciprocating pump? (CO5,K2)	10
8-b.	What is a reciprocating pump? Describe the principle and working of a	10

reciprocating pump with a neat sketch. Why is a reciprocating pump not coupled

directly to the motor? Discuss the reason in detail. (CO5,K2)

angular velocity w speed of advance V, diameter D, dynamic viscosity μ , mass density p, elasticity of the fluid medium which can be denoted by the speed of

