Printed Pag	•	
	Roll. No:	7
MOTE		
NOIL	DA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTIL Luckney)	
	(An Autonomous Institute Affiliated to AKTU, Lucknow) MCA (Integrated)	
	SEM: III - THEORY EXAMINATION (2024 - 2025)	
	Subject: Data Structures	
Time: 3 l		0
General In		
	fy that you have received the question paper with the correct course, code, branch etc.	
_	estion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice (MCQ's) & Subjective type questions.	
	um marks for each question are indicated on right -hand side of each question.	
	te your answers with neat sketches wherever necessary.	
	suitable data if necessary.	
•	bly, write the answers in sequential order.	
6. No sheet evaluated/o	t should be left blank. Any written material after a blank sheet will not be	
evatuatea/0	спескей.	
SECTION	<u>N-A</u> 2	20
1. Attempt	t all parts:-	
	The order of an algorithm that finds whether a given Boolean function of n variables 'n' produces a 1 is CO1, K1	1
(a)	linear	
(b)	constant	
(c)	exponential	
(d)	logarithmic	
1-b	algorithm is one which utilizes minimum processor time and	1
r	requires minimum memory space during its execution. CO1, K1	
(a)	Best	
(b)	Efficient	
(c)	Both (a) and (b)	
(d)	None of the above	
1-c.	Any arithmetic expression can be represented in any of the notation. CO2, K1	1
(a)	Infix expression	
(b)	Postfix expression	
(c)	Prefix expression	
(d)	all the above	
	In a circular queue implementation using array of size 5, the array index starts with 0 where front and rear values are 3 and 4 respectively. Determine the array	1

	in	dex at which the insertion of the next element will take place. CO2, K1	
	(a)	5	
	(b)	4	
	(c)	0	
	(d)	None of the above	
1-e.		linear collection of data elements where the linear node is given by means of binter is called? CO3, K1	1
	(a)	linked list	
	(b)	node list	
	(c)	primitive list	
	(d)	None of these	
1-f.	Ir	doubly linked lists, traversal can be performed? CO3, K1	1
	(a)	Only in forward direction	
	(b)	Only in reverse direction	
	(c)	In both directions	
	(d)	None	
1-g.	Н	eight of a binary tree is CO4, K1	1
	(a)	MAX(Height of left Subtree, Height of right subtree)+1	
	(b)	MAX(Height of left Subtree, Height of right subtree)	
	(c)	MAX(Height of left Subtree, Height of right subtree)-1	
	(d)	None of the above	
1-h.		heap sort, after deleting the last minimum element, the array will contain ements in? CO4, K1	1
	(a)	increasing sorting order	
	(b)	decreasing sorting order	
	(c)	tree inorder	
	(d)	tree preorder	
1-i.	W	Thich of the following is false? CO5, K2	1
	(a)	The spanning trees do not have any cycles	
	(b)	MST have $n-1$ edges if the graph has n edges	
	(c) in th	Edge e belonging to a cut of the graph if has the weight smaller than any other edge e same cut, then the edge e is present in all the MSTs of the graph	e
	(d)	Removing one edge from the spanning tree will not make the graph disconnected	
1-j.	` ,	very graph has only one minimum spanning tree. CO5, K2	1
J	(a)	TRUE	_
	(b)	FALSE	
	(c)	Depends upon Algorithm used to find minimum spanning tree	
	(d)	depends upon edge length	
	\ /		

2. Attem	pt all parts:-	
2.a.	Discuss the advantages and disadvantages of hashing over other searching technique. CO1, K2	2
2.b.	Define Underflow condition of Stack. CO2, K2	2
2.c.	Implement a function that counts the number of nodes in a circularly linked list. CO3, K4	2
2.d.	Explain Threaded Binary Tree. CO4, K2	2
2.e.	Define minimum spanning tree. CO5, K2	2
SECTIO	<u>ON-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Explain Bubble Sort with example by showing all steps. CO1, K2	6
3-b.	Define Array and briefly explain array operations. CO1, K2	6
3-c.	Explain different types queues in details. CO2, K2	6
3-d.	Differentiate between Recursion and Iteration. CO2, K4	6
3.e.	Explain Singly Linked List in short. CO3, K2	6
3.f.	Explain post-order traversal of a binary tree with an example. CO4, K2	6
3.g.	Define adjecency list with an example. CO5, K2	6
SECTIO	ON-C	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Explain linear data structure in detail with example. CO1, K2	10
4-b.	Using the hash function 'key mod 7', insert the following sequence of keys in the hash table- 50, 700, 76, 85, 92, 73 and 101. Use Quadratic probing technique for collision resolution. CO1, K4	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Write a python program to implement quick sort using recursion. CO2, K4	10
5-b.	Explain circular queue. Also explain implementation of circular queue. CO2, K4	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	What are different ways of implementing linked list? Write a function to reverse the nodes of a linked list. CO3, K4	10
6-b.	Write functions in Python to delete a node (i) from the beginning, (ii) from the end in a singly linked list. Illustrate with an example. CO3, K4	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Construct a tree for the given inorder and postorder traversals. CO4, K5 Inorder: DGBAHEICF Postorder: GDBHIEFCA	10
7-b.	Construct an AVL tree having the following elements: H, I, J, B, A, E, C, F, D, G, K, I. Also show steps. CO4, K4	10

8. Answer any <u>one</u> of the following:-

8-a. Differentiate BFS and DFS. CO5, K4
8-b. Explain Divide and conquer algorithm with an example. CO5, K2
10

