Printed Pag	e:- 04	Subject Code:- BMICSE0304 Roll. No:			
NOID	A INSTITUTE OF ENGINEERING A	AND TECHNOLOGY, GREATER NOIDA			
	(An Autonomous Institute Affiliated to AKTU, Lucknow)				
		Tech (Integrated)			
	SEM: III - THEORY EXAM				
Time: 3 H	Subject: Digital Log	gic and for Systems Max. Marks: 100			
General Ins		WIAX. WIAIRS. 100			
		paper with the correct course, code, branch etc.			
1. This Que	stion paper comprises of three Section	ns -A, B, & C. It consists of Multiple Choice			
	MCQ's) & Subjective type questions.				
	1	ed on right -hand side of each question.			
	your answers with neat sketches whe	rever necessary.			
	uitable data if necessary. ly, write the answers in sequential ord	ler			
•	should be left blank. Any written mate				
evaluated/c		·			
SECTION-A 1. Attempt all parts:-		20			
-	-	10 in (CO1 K1)			
	he Gray code equivalent of binary 10	10 is: (CO1,K1)			
(a)	1110				
(b)	1101				
(c)	1001				
(d)	1111				
1-b. T	he function $F=A\cdot(B+C)$ is equival	ent to: (CO1,K2) 1			
(a)	AB+AC				
(b)	A+BC				
(c)	AB.AC				
(d)	A+B+C				
1-c. H	low many AND gates are required for	a 1-to-8 Demultiplexer? (CO2,K1)			
(a)	2				
(b)	6				
(c)	8				
(d)	5				
1-d. W	Which signal has the highest priority in	a priority encoder? (CO2,K1)			
(a)	a) Least significant input				
(b)	b) Most significant input				

	(c)	c) Middle input	
	(d)	d) Random input	
1-e.	A	ction in JK flip-flop when both J and K inputs are high. (CO3,K2)	1
	(a)	Reset the state	
	(b)	Set the state	
	(c)	No change	
	(d)	Toggle the state	
1-f.	\mathbf{N}	Saximum states in 3-bit Ring counter. (CO3,K2)	1
	(a)	2	
	(b)	4	
	(c)	3	
	(d)	8	
1-g.	T	he key challenge in ensuring security in IoT is (CO4,K2)	1
	(a)	Standardizing the communication protocol	
	(b)	Reducing device power consumption	
	(c)	Managing large-scale networks	
	(d)	Preventing unauthorized access to devices and networks	
1-h.	A	ctuators in an IoT system are responsible for (CO4,K2)	1
	(a)	Collecting environmental data	
	(b)	Storing and processing data	
	(c)	Performing actions based on processed data	
	(d)	Establishing communication between devices	
1-i.	P	roximity sensors are used to: (CO5,K2)	1
	(a)	Measure temperature	
	(b)	Detect the presence of an object without physical contact	
	(c)	Measure light intensity	
	(d)	Monitor humidity levels	
1-j.	Н	low do pneumatic actuators create motion? (CO5,K2)	1
	(a)	Using electrical energy	
	(b)	Using fluid pressure	
	(c)	Using compressed air	
	(d)	Using mechanical force	
2. Att	empt a	all parts:-	
2.a.	S	ate the Demorgan's theorem. (CO1,K1)	2
2.b.	D	esign 8:1 Mux usiNG two 4:1 Mux. (CO2,K3)	2
2.c.	St	tate one advantage of a synchronous counter. (CO3,K1)	2
2.d.	Н	low does IoT contribute to smart cities? (CO4,K2)	2

∠.e.	Defille LDR.(CO3,R1)	4
SECTION	<u>ON-B</u>	30
3. Answ	ver any five of the following:-	
3-a.	Implement the Boolean expression (i)AB+ CD+E (ii) (A+B). C. (D+E) using NAND gate. (CO1,K3)	6
3-b.	Minimise using K-Maps: $F(A, B, C, D) = \sum m(1,3,7,11,15) + d(0,2,4)$. Implement the minimize expression using logic gates. (CO1,K4)	6
3-c.	Draw and explain full adder using two half-adders. (CO2,K3)	6
3-d.	Implement F (A, B, C, D) = Σ (0,1,3,4,8,9,15) using 8x1 multiplexer: If MSB i.e. A is used as input variable and B, C, D as select lines. (CO3,K3)	6
3.e.	Explain the working of a T flip-flop. (CO3,K2)	6
3.f.	Investigate the concept of interoperability in IoT devices and how it influences device integration and communication. (CO4,K4)	6
3.g.	Explain RFID, and how does it work is? (CO5,K2)	6
SECTION	<u>ON-C</u>	50
4. Answ	ver any one of the following:-	
4-a.	Minmize the $F(W,X,Y,Z)=\sum m(2,6,8,9,10,11,14,15)$ using Quine-McCluskey method. (CO1,K4)	10
4-b.	If the Hamming code sequence 1100110 is transmitted and due to error in one position, is received as 1110110, locate the position of the error bit using parity checks and give the method for obtaining the correct sequence. (CO1,K4)	10
5. Answ	ver any <u>one</u> of the following:-	
5-a.	Discuss and design a combinational circuit which converts the BCD to Excess-3. (CO2,K3)	10
5-b.	Design and explain carry look ahead adder. (CO2,K3)	10
6. Answ	ver any one of the following:-	
6-a.	Analyze the design of a 4-bit binary up-down counter and explain its working with a timing diagram.(CO3,K4)	10
6-b.	Illustrate the working of a 4-bit PISO register and describe its use in serial data transmission. (CO3,K3)	10
7. Answ	ver any one of the following:-	
7-a.	Outline the conceptual framework of IoT, focusing on the role of microcontrollers in bridging the physical and digital worlds. (CO4,K2)	10
7-b.	Examine the features of Arduino UNO and how it can be utilized in developing IoT applications. (CO4, K2)	10
8. Answ	ver any <u>one</u> of the following:-	
8-a.	Describe the process of programming an Arduino board using the Arduino IDE. Include steps for setting up the IDE, Write a program of LED blinking with Pushbutton (CO5 K2)	10

8-b. Discuss the process of interfacing an ultrasonic sensor with Arduino to measure distance. Include the circuit diagram and code. (CO5,K3)

