Subject Code: BMICSE0306

Roll No:

Max. Marks:100

1

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

M.Tech(Integrated)

SEM: III- THEORY EXAMINATION (2024-2025)

Subject DISCRETE STRUCTURES

Time: 3 Hours

General Instructions:

IMP: Verify that you have received question paper with correct course, code, branch etc.

- 1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.
- 2. Maximum marks for each question are indicated on right hand side of each question.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.
- 6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

1. Attempt all parts:-

1 - a.	Which among the following can be taken as the discrete object : (CO1,K2)	1
---------------	--	---

- (a) People
- (b) Rational Numbers
- (c) Integers
- (d) All the mentioned

1-b. The function (gof) is ______, if the function f and g are onto function : 1 (CO1,K2) 1

- (a) Onto function
- (b) into function
- (c) one-to-one function
- (d) one-to-many function

1-c. Select incorrect statemen if *X* and *Y* are two nonempty relations on the set *S*.

(CO2,K3)

- (a) If X and Y are transitive, then the intersection of X and Y is also transitive commutative
- (b) If X and Y are reflexive, then the intersection of X and Y is also reflexive
- (c) If X and Y are symmetric, then the union of X and Y is not symmetric
- (d) If X and Y are transitive, then the union of X and Y is not transitive

1-d.	A semigroup S under binary operation $*$ that has an identity is called	1
	(a) multiplicative identity	
	(a) multiplicative identity (b) monoid	
	(c) subgroup	
	(d) homomorphism	
1-e.	Counting the elements in the group G determines the of the group.(CO3,K2)	1
	(a) number	
	(b) elements (c) order	
	(d) pair	
1-f.	Due to the nature of partial orders, in Hasse diagrams, some edges between	1
	vertices are deleted. (CO3,K3)	
	(a) Transitivity	
	(b) Reflexivity	
	(c) Associativity	
	(d) Antisymmetric	
1-g.	The following identities are valid if L is a bounded lattice.(CO4,K3)	1
	(a) $a \vee 1 = 1$	
	(b) $a \land 1 = a$	
	(c) $a \lor 0 = a$	
	(d) all of the above	
1 - h.	Contrapositive of $p \rightarrow q$ is the proposition: .(CO4,K1)	1
	(a) ~p→~q	
	(b) ~q→~p	
	(c) q→~p	
	(d) $\sim q \rightarrow p$	
1-i.	In a connected undirected graph with n vertices and e edges, what is the minimum	1
	number of edges required? (CO5,K1)	
	(a) n -1	
	(b) e-n	
	(c) $n + 1$	
	(d) n^2	
1-j.	Select graph which is non-planar : (CO5,K1)	1
	a) K ₄	
	b) K ₅	
	c) star graph	

d) path graph

2.	Attempt all	parts:-
----	-------------	---------

2.a.	Explain the concept of composition of relations and inverse relations.(CO1,K2)	2
2.b.	Define algebraic structure. List the properties of a semigroup.(CO2,K2)	2
2.c.	Define a partially ordered set. Give an example of Poset. (CO3,K2)	2
2.d.	Define proposition and compound proposition with examples. (CO4,K2)	2
2.e.	Define a graph. Explain the differences between directed and undirected graphs.(CO5,K2)	2
	SECTION – B	30
3. An	swer any <u>five</u> of the following-	
3-a.	Provide an example of an equivalence relation and a partial order relation.(CO1,K3)	6
3-b.	Prove or disprove the following statements about sets: (i) A - (B \cap C) = (A - B) \cap (A - C) for all sets A, B, C. (ii) A - (B \cap C) = (A - B) \cup (A - C) for all sets A, B, C. (CO1,K3)	6
3-c.	Explain group and its properties with an example. (CO2,K2)	6
3-d.	Describe applications of Algebraic structures.(CO2,K2)	6
3-е.	Draw the lattice of all divisors of 36 and explain whether it is distributive or not.(CO3,K3)	6
3-f.	Discuss the difference between tautology, contradiction, and contingency with examples.(CO4,K2)	6
3-g.	Explain chromatic number with example. Mention real life applications.(CO5,K2)	6
	$\mathbf{SECTION} - \mathbf{C}$	50
4. An	swer any <u>one</u> of the following-	
4-a.	Draw the directed graph for the relation <i>R</i> defined by the matrix $M_{R} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$	10
4-b. 5. An	Also determine the properties of relation <i>R</i> .(CO1,K3) Let $f: \mathbb{N} \to \mathbb{Z}$ be defined by the two-part rule $f(n) = \begin{cases} n/2, & \text{if } n \text{ is even} \\ -(n + 1)/2, & \text{if } n \text{ is odd} \end{cases}$ Determine whether <i>f</i> is one-to-one. Determine whether <i>f</i> is onto \mathbb{Z} .(CO1,K4) swer any one of the following-	10
5-a.	Determine whether the following groups are Abelian or non-Abelian. Justify your	10
5-b.	 answers: (i) (Z₅, +₅) (ii) S₃ (Symmetric group on 3 elements) (iii) (R*, ·) (nonzero real numbers under multiplication) (CO2,K4) Differentiate between homomorphism and Isomorphism of groups with examples. 	10
	(CO2,K3)	

- 6. Answer any one of the following-
- 6-a. Consider the poset P with Hasse diagram as shown below:

10

10

- (i) List the maximal members and minimal members of P.
- (ii)Is there a largest member of P? If so, what is it? Is there a smallest member of P? If so, what is it?
- (iii) Determine: LUB{b, c}, GLB{b, c}, LUB{b, f}, GLB{b, f}, LUB{g, c}, and GLB{g, c}. (CO3,K4)
- 6-b. Define the bounded lattice and distributive lattice. Give an example of each. Let L be 10 a bounded distributive lattice then show that if a complement exists in L it is unique.(CO3,K4)
- 7. Answer any one of the following-
- 7-a. (i) Prove or disprove that (p → q) → r and p → (q → r) are equivalent.
 (ii)Prove that (¬q ∧ (p → q)) → ¬p is a tautology using logical equivalences.
 (CO4,K4)
- 7-b. Explain how inference rules can be used to prove logical arguments and compare this 10 method with truth tables.

Using truth table prove that:

 $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P). (CO4,K4)$

- 8. Answer any one of the following-
- 8-a. State and prove Euler's theorem for connected graphs. Use an example to verify the 10 theorem. (CO5,K4)
- 8-b. Define complete graphs and planar graphs. Use Kuratowski's theorem to determine 10 whether the graph K₅ is planar. (CO5,K4)