Subject Code: ABT0502

Roll No:

Printed page: 4

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: V - THEORY EXAMINATION (2024-2025)

Subject: Bioprocess Engineering

Time: 3 Hours

General Instructions:

IMP: Verify that you have received question paper with correct course, code, branch etc.

- 1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.
- 2. Maximum marks for each question are indicated on right hand side of each question.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.
- 6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

1. Attempt all parts:-

1-a. Which phase has the condition of specific growth rate " $\mu = 0$ "? (CO1, K2)

- (a) Log Phase
- (b) Death Phase
- (c) Stationary Phase
- (d) Lag Phase

1-b. Calculate the stoichiometric coefficients of the following biological reaction:

Glucose: $C_6H_{12}O_6 + aO_2 + bNH_3 = c (C_{4.4}H_{7.3}N_{0.86}O_{1.2}) + d H_2O + e CO_2 (CO1, K2)$

(a)
$$a = 1.573$$
, $b = 0.685$, $c = 0.470$, $d = 2.564$, $e = 2$

- (b) a = 2.789, b = 1.896, c = 0.438, d = 1.395, e = 1
- (c) a = 1.473, b = 0.782, c = 0.909, d = 3.854, e = 2
- (d) a = 2.390, b = 1.295, c = 0.943, d = 2.564, e = 1
- 1-c. The catalytic efficiency of two distinct enzymes can be compared based on which of 1 the following factor? (CO2, K2)
 - (a) K_m
 - (b) Product formation
 - (c) Size of the enzymes
 - (d) pH of optimum value

10:

Max. Marks:100

1

1

	Subject Code:	• • • • • •
1-d.	Which of the following matrix is not used while immobilizing the enzyme by covalent	1
	binding? (CO2, K1)	
	(a) Agarose	
	(b) Cellulose	
	(c) Calcium alginate	
	(d) Glutaraldehyde	
1-е.	Impeller flooding signifies (CO3, K1)	1
	(a) The flooding of an impeller	
	(b) Gas handling is greater than the amount introduced	
	(c) Gas handling is smaller than the amount introduced	
	(d) None of the above	
1-f.	What do you mean by "k _L a"? (CO3, K1)	1
	(a) Volumetric mass transfer coefficient	
	(b) Henry's law coefficient	
	(c) Volumetric oxygen transfer coefficient	
	(d) None of these	
1-g.	Which type of fermenter and process does Penicillin production requires? (CO4, K1)	1
	(a) Batch fermenter and fed-batch process	
	(b) Batch fermenter and batch process	
	(c) Continuous fermenter and fed-batch process	
	(d) Continuous fermenter and batch process	
1-h.	species are used for acetone–butanol production. (CO4, K1)	1
	(a) Clostridium	
	(b) Bacillus	
	(c) Streptomyces	
	(d) Acetobacter	
1-i.	Are these statements about the sterilization true?	1
	Statement 1: Sterilization process consists of 3 phases.	
	Statement 2: Phase 2 in sterilization process is known as holding phase. (CO5, K1)	
	(a) True, False	
	(b) True, True	
	(c) False, True	

(d) False, False

1-j.	Which of the following is an advantage of continuous sterilization over batch	1
	sterilization? (CO5, K1)	
	(a) Solid matter can be used in media	
	(b) Reduction of fermenter corrosion	
	(c) Lower risk of contamination	
	(d) Easier control	
2. A	ttempt all parts:-	
2.a.	What is bacterial growth rate? How it differs from specific growth rate? (CO1, K2)	2
2.b.	State the advantages of fed-batch bioreactor over batch reactor. (CO2, K1)	2
2.c.	Discuss why baffles are installed in the side wall of the bioreactor leaving a small gap. (CO3, K1)	2
2.d.	What type of difficulties one can face during the downstream processing of proteins? (CO4, K1)	2
2.e.	What do you understand by decimal reduction time in context to sterilization? (CO5, K1)	2
	SECTION – B	30
3. A	nswer any <u>five</u> of the following-	
3-a.	Describe any two indirect methods of quantifying microbial growth. (CO1, K2)	6
3-b.	The growth of <i>S. cerevisiae</i> on glucose under anaerobic conditions can be described by the following overall reaction: $C_6H_{12}O_6 + b NH_3 \rightarrow 0.59 CH_{1.74}N_{0.2}O_{0.45}$ (biomass) + 0.43 $C_3H_8O_3$ + 1.54 CO_2 + 1.3	6
	a. Determine the biomass yield coefficient $Y_{X/S}$.	
3-c.	b. Determine the product yield coefficients $Y_{\text{EtOH/S}}$, $Y_{\text{CO2/S}}$, Y_{C3H8O3} . (CO1, K2) Describe the significance of K _m , V _{max} and K _{cat} in enzyme kinetics. (CO2, K2, K3)	6
3-d.	Explain any two enzyme immobilization method. What are the advantages and disadvantages of that method? (CO2, K1)	6
3-е.	Using appropriate example discuss solid-state fermentation. (CO3, K1)	6
3-f.	Discuss any case study involving the production of insulin. (CO4, K2)	6
3-g.	Elaborate the advantages of continuous sterilization over batch sterilization. (CO5, K1)	6
	SECTION – C	50
4. A	nswer any <u>one</u> of the following-	
4-a.	Discuss the kinetics of microbial growth and substrate utilization. (CO1, K2)	10
4-b.	Using appropriate example elaborate the stoichiometry of microbial product formation. (CO1, K2)	10
5. A	nswer any <u>one</u> of the following-	
5-a.	Discuss in detail construction and working of a continuous bioreactor. (CO2, K1)	10
5-b.	Explain the characteristic features of immobilized enzymes. What do you understand by cross-linked enzymes? (CO2, K2)	10

- 6. Answer any one of the following-
- 6-a. Illustrate various parameters that need to be checked during scale up of a bioreactor 10 and also give mathematical equations corresponding to them. (CO3, K1)
- 6-b. Elaborate the operation and control of a bioreactor with respect to aeration and heat 10 transfer. (CO3, K1)
- 7. Answer any one of the following-
- 7-a. Describe the process for high fructose corn syrup production. (CO4, K1) 10
- 7-b. With appropriate discussion elaborate the production process of bio-ethanol. (CO4, K1) 10
- 8. Answer any one of the following-
- 8-a. Elaborate various heat based and radiation based methods of sterilization. (CO5, K1) 10
- 8-b. Discuss mathematical modelling used in bioprocess engineering in context to dynamic 10 mass balance equations. (CO5, K1)