Printed 3	Page:- 04	Subject Code:- ABT0511 Roll. No:
NC	(An Autonomous Institute A	AND TECHNOLOGY, GREATER NOIDA Affiliated to AKTU, Lucknow) Tech
		MINATION (2024 - 2025)
		1 Reaction Engineering
	3 Hours	Max. Marks: 100
	Instructions:	
	-	paper with the correct course, code, branch etc. ons -A, B, & C. It consists of Multiple Choice
	ns (MCQ's) & Subjective type questions	
_		ted on right -hand side of each question.
	rate your answers with neat sketches wh	erever necessary.
	ne suitable data if necessary.	7
v	rably, write the answers in sequential of neet should be left blank. Any written ma	
	ieei snouid be ieji blank. Any wrillen ma ed/checked.	ieriai ajier a biank sneei wiii noi be
SECTION 1 Attorn		20
	npt all parts:-	
1-a.	can be described as the concentration of all reactants in a cher	ne power dependence of rate on the 1
	expression.(CO1, K1)	inear reaction on the rate law
((a) order of the reaction	
	(b) molecularity of the reaction	
	(c) rate constant	
	(d) none of these	
1-b.		itable reactor for pharmaceutical industry? 1
	(CO1, K1)	
((a) PFR	
((b) Batch reactor	
((c) PBR	
((d) MBR	
1-c.	Select the appropriate factor on which can be compared? (CO2, K1)	catalytic efficiency of two distinct enzymes 1
((a) Km	
	(b) Product formation	
((c) Size of the enzymes	
((d) pH of optimum value	

1-d.	W	Tho proposed Induced fit model of an enzyme? (CO2, K1)	1
	(a)	Kuhne	
	(b)	Koshland	
	(c)	Payen	
	(d)	Sumner	
1-e.		Thich phase of growth kinetics is responsible for the production of secondary etabolites? (CO3,K1)	1
	(a)	Stationary phase	
	(b)	Exponential phase	
	(c)	Lag phase	
	(d)	None of the above	
1-f.	a a	is an equation used in chemical kinetics to describe changes in the rate of chemical reaction against temperature. (CO3, K1)	1
	(a)	Van't hoff equation	
	(b)	Erying equation	
	(c)	Arrhenius equation	
	(d)	Monod equation	
1-g.		is defined as the mass of product formed per unit mass of substrate onsumed. (CO4, K1)	1
	(a)	product formation	
	(b)	specific rate of product formation	
	(c)	yield coefficient	
	(d)	none of the above	
1-h.		rate is defined as flow rate divided by volume of the bioreactor.(CO4, K1)	1
	(a)	volumetric rate	
	(b)	plug flow rate	
	(c)	dilution rate	
	(d)	none of the above	
1-i.		ommensalism is an interaction in which one population is affected by the presence of the other. (CO5, K1)	1
	(a)	negatively	
	(b)	positively	
	(c)	neutral	
	(d)	none of the above	
1-j.		he classical model that describes oscillations in a prey-predator system is odel. (CO5, K1)	1
	(a)	Erying	
	(b)	Monod	

(d	l) None of the above	
2. Attemp	pt all parts:-	
2.a.	Compare zero, first, and second-order reaction with suitable example? (CO1, K2)	2
2.b.	Outline the process of determining enzyme efficiency. (CO2, K2)	2
2.c.	What is the significance of diauxic growth? (CO3, K1)	2
2.d.	Define residence time distribution? (CO4, K1)	2
2.e.	What do you understand by protocooperation? Give example. (CO5, K1)	2
SECTIO	0N-B	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Explain Arrhenius law with suitable example? How does the activation energy and rate constant can be determined? (CO1, K2)	6
3-b.	How will you represent kinetic models for non-elementary reactions? (CO1, K1)	6
3-c.	Derive an equation for Lineweaver Burk plot using Michaelis-Menten equation? (CO2, K3)	6
3-d.	Explain the significance and applications of the Michaelis-Menten equation in enzyme kinetics? (CO2, K2)	6
3.e.	State the importance of mass transfer in microbial fermentation? (CO3, K1)	6
3.f.	Describe batch fermentation with respect to biodiesel production in detail? (CO4, K1)	6
3.g.	State any six industrial applications of mixed cultures? (CO5, K1)	6
SECTIO	<u>N-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	How will you interpret data in constant volume batch bioreactor using partial pressures? (CO1, K1,K2)	10
4-b.	Discuss in detail about the kinetic models for homogeneous reactions? (CO1, K2)	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Explain the concept of enzyme immobilization in detail? Classify different methods of enzyme immobilization with their advantages and Disadvantages? (CO2, K2,K3)	10
5-b.	Derive an equation for solute concentration in an immobilized system for internal mass transfer following zero order kinetics? (CO2, K3)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Describe various characteristics of oxygen uptake in cells? What is the significance of critical oxygen tension? (CO3, K1)	10
6-b.	How will you describe the diffusion theory of transport phenomena in bioprocess system? (CO3, K1)	10
7. Answe	er any one of the following:-	

(c) Lotka-Volterra

7-a.	Describe the concept of residence time distribution with the help of diagram in CSTR? (CO4, K1)	10
7-b.	Why Solid state fermentation is considered to be the better mode of fermentation than submerged fermentation? Describe the working principle of plug flow bioreactor? (CO4, K1)	10
8. Ansv	ver any one of the following:-	
8-a.	How would you describe the expressions for mutualistic growth in a mixed culture system? (CO5, K1)	10
8-b.	Describe the concept of Lotka-Volterra model in terms of microbial interaction?	10

