Printed	d Pag		Subject Cod	le:- A	CSB\$	S050	1			
		I F	Roll. No:							
N	IOID	A INSTITUTE OF ENGINEERING AN						≀ NO	IDA	L
		(An Autonomous Institute Affi B.Tec		XIU,	Luck	now,)			
		SEM: V - THEORY EXAMI		2024-	2025	6)				
		Subject: Design and Ana	,			,				
Time	e: 3 H	Hours	·				Ma	ax. M	larks	s: 100
		tructions:					,	,	,	
		that you have received the question pa	-							
		stion paper comprises of three Sections <i>MCQ's) & Subjective type questions.</i>	-A, D, & C	. 11 CO	risisis	s oj w	ашир	ie Cn	oice	
		n marks for each question are indicated	on right -h	and s	ide o	f eaci	h ques	stion.		
		your answers with neat sketches where	_		J		1			
		uitable data if necessary.								
v		ly, write the answers in sequential order		1 1	1 .	•11	. 1			
		should be left blank. Any written mater hecked.	ial after a b	olank s	sheet	will	not be			
evatua	ieu/ci	пескей.								
SECT	ION-	- <u>A</u>					X			20
1. Attempt all parts:-		all parts:-			2					
1-a.	T	he Complexity of Linear Search Algoric	thm: (CO1,	K1)						1
	(a)	O(n)		j						
	(b)	O(log n)								
	(c)	O(nlog n)	V'							
	(d)	O(n2)								
1-b.		Which algorithm refers to defining the mun-time performance. (CO1, K1)	athematical	l boun	datic	on/fra	ming	of its	,	1
	(a)	Symptotic analysis								
	(b)	Asymptotic analysis								
	(c)	Posterior Analysis								
	(d)	Priori Analysis								
1-c.		Which of the following standard algorith	ms is not a	Greed	ly alg	gorith	ım? (C	CO2,	K1)	1
	(a)	Dijkstra's shortest path algorithm			, ,		`	ŕ	,	
	(b)	Optimal substructure								
	(c)	Memoization								
	(d)	Greedy								
1-d.	If	a problem can be solved by combining roblems, the strategy is called: (CO2, K	-	lution	s to r	on-o	verlap	ping		1
	(a)	Dynamic programming	,							

	(b)	Greedy	
	(c)	Divide and conquer	
	(d)	Recursion	
1-e.	T	ime complexity of Depth First Search algorithm is: (CO3, K2)	1
	(a)	O(V lg E)	
	(b)	O(E+V)	
	(c)	O(lg V)	
	(d)	O(E lg E)	
1-f.	W	There is the n-queens problem implemented? (CO3, K1)	1
	(a)	carom	
	(b)	chess	
	(c)	ludo	
	(d)	cards	
1-g.	T	he worst-case efficiency of solving a problem in polynomial time is:(CO4, K1)	1
	(a)	O(p(n))	
	(b)	$O(p(n \log n))$	
	(c)	$O(p(n^2))$	
	(d)	$O(p(m \log n))$	
1-h.		roblems for which there exist no efficient algorithms to solve them are known	1
	as	s? (CO4, K1)	
	(a)	intractable problems	
	(b)	Tractable problems	
	(c)	decision problems	
	(d)	complete problems	
1-i.	T	he sum and composition of two polynomials are always polynomials. (CO5, K2)	1
	(a)	worst case	
	(b)	best case	
	(c)	average case	
	(d)	none of the mentioned	
1-j.	P	roblems that can be solved in polynomial time are known as? (CO5, K2)	1
	(a)	time bound	
	(b)	Space bound	
	(c)	Both	
	(d)	None of these	
2. Att	empt a	all parts:-	
2.a.	W	Vrite the difference between an Algorithm and a Program . (CO1, K4)	2
2.b.	W	That are the properties of Dynamic Programming? (CO2, K1)	2
2.c.	\mathbf{E}	xplain Negative weighted cycles. (CO3, K2)	2

2.d.	Define deterministic problem. (CO4, K1)	2		
2.e.	Write short note on Approximation Algorithm. (CO5, K1)	2		
SECTIO	<u>)N-B</u>	30		
3. Answe	er any <u>five</u> of the following:-			
3-a.	Compare between Iterative and recursive algorithm. (CO1, K4)	6		
3-b.	Find the time complexity of the recurrence relation. (CO1, K3) $T(n)=n+T(n/10)+T(7n/5)$			
3-c.	What are the differences between the top-down approach and the bottom-up approach? (CO2, K4)	6		
3-d.	Compare and contrast dynamic programming and divide and conquer approach? (CO2, K4)	6		
3.e.	Implement Kruskal's algorithm and analyze it's time complexity in steps. (CO3, K3) A B C	6		
3.f.	Define Vertex cover problem and also prove that vertex cover Problem is NP-	6		
	Complete problem.(CO4, K1,K5)			
3.g.	Explain the approximation algorithm for the travelling salesman problem (TSP). (CO5, K2)	6		
SECTIO	<u>ON-C</u>	50		
4. Answe	er any <u>one</u> of the following:-			
4-a.	Solve the recurrence relation ? By using back Substitution Method. (CO1, K3) $T(n)=1$ $n=0$ $T(n)=T(n-1)+1$ $n>0$	10		
4-b.	From the given algorithm form a recurrence relation T(n) And Solve the recurrence relation T(n)? By using recursive tree Method or Back Substitution method. (CO1, K4) void test(int n) { if(n>0) { for(i=1)i <n:i=i*2)< td=""><td>10</td></n:i=i*2)<>	10		
	for(i=1;i <n;i=i*2) printf("%d",i);="" td="" test(n-1);="" {="" }="" }<=""><td></td></n;i=i*2)>			

5. Answe	er any <u>one</u> of the following:-	
5-a.	Describe Brute force algorithm. Differentiate Greedy algorithm and Dynamic Programming? (CO2)	10
5-b.	Consider the sum-of-subset problem n= 4 'Sum=13' and wt1=3 'wt2=4 wt3=5 and wt4=6. Find a solution to the problem using backtracking. Show the state-space tree leading to the solution. Also number the nodes in the tree in the order of recursion calls. (CO2, K3)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Demonstrate Network Flow Algorithm. What does source and sink represent in Network Flow Algorithm? Write the five applications of Network Flow Algorithm. (CO3, K3, K1)	10
6-b.	Explain the term "minimum spanning tree". By using a suitable graph implement Prim's algorithm to find minimum spanning tree and write down its applications. (CO3, K2,K3)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Discuss Hamiltonian path. Why is it used? Find the hamiltonian path of the following graph. (CO4, K2,K3)	10
7-b.	Let w={5,7,10,12,15,18,20} and m=35.Compute all possible subset of w whose sum is equivalent to m. Draw the portion of state space tree for this problem. (CO4, K3)	10
8. Answe	er any <u>one</u> of the following:-	
8-a.	Relate how Approximation algorithms deals with NP-Complete problems? Compare Randomized algorithm and Approximation algorithm. (CO5, K4)	10
8-b.	Describe Quantum algorithm. Write down the application of Quantum algorithm. (CO5, K2)	10