Printe	d Pag		oject Code:- A	.CSML0	502		
		Ro	ll. No:				
N	IOID	A INSTITUTE OF ENGINEERING AND				NOI	DA
		(An Autonomous Institute Affilia B.Tech	ted to AKIU,	Luckno	W)		
		SEM: V - THEORY EXAMINA	ATION (2024	- 2025)			
		Subject: Machine	`	2023)			
Time	e: 3 H	· ·	\mathcal{E}		Ma	x. Ma	arks: 100
Genera	al Ins	structions:					
		y that you have received the question pape					
	_	estion paper comprises of three Sections -A	A, B, & C. It co	onsists of	Multipl	e Cho	vice
		MCQ's) & Subjective type questions. m marks for each question are indicated of	n right hand s	side of a	ioh auos	tion	
		n marks for each question are maicaiea of your answers with neat sketches whereve	-	iue oj ec	ich ques	uon.	
		suitable data if necessary.	r recessery.				
		ly, write the answers in sequential order.					
6. No .	sheet	should be left blank. Any written material	after a blank	sheet wil	ll not be		
evalua	ited/ci	checked.					
SECT	TON						20
		all parts:-					20
1-a.	_	dentify the kind of learning algorithm for	"facial identiti	ies for fa	cial		1
1-a.		xpressions". (CO1,K1)	raciai identiti	ics 101 1a	Ciai		1
	(a)	Prediction					
	(b)	Recognition Patterns					
	(c)	Recognizing anomilies					
	(d)	Generating patterns					
1-b.	` ′	What is the term known as on which the ma	ochina laarnin	a algoriti	me buil	d a	1
1-0.		nodel based on sample data?(CO1,K1)	emme tearming	g algoriu	iiiis ouii	u a	1
	(a)	Data Training					
	(b)	Training data					
	(c)	Transfer data					
	(d)	None of the above					
1-c.	W	What is Regression?(CO2,K2)					1
	(a)	It is a technique to predict values					
	(b)	It is a technique to find outliers					
	(c)	It is a technique to fix data					
	(d)	It is a Machine Learning algorithm					
1-d.	F	For what Polynomial Regression is used?(C	CO2,K3)				1
	(a)	Handle linear and separable data					

	(b)	Handle with non-linear and separable data	
	(c)	Find the best linear line	
	(d)	Classify binary data	
1-e.	K	NN is algorithm.(CO3,K1)	1
	(a)	Non-parametric and Lazy Learning	
	(b)	Parametric and Lazy Learning	
	(c)	Parametric and Eager Learning	
	(d)	Non-parametric and Eager Learning	
1-f.	W	Thich of the following option is true about k-NN algorithm? (CO3,K1)	1
	(a)	it can be used for classification	
	(b)	it can be used for regression	
	(c)	it can be used in both classification and regression	
	(d)	not useful in ml algorithm	
1-g.	.]	Formula for Bayes theorem is(CO4,K1)	1
	(a)	$P(A B) = (frac\{P(B \mid A)P(A)\}\{P(B)\})$	
	(b)	$P(A B) = (frac\{P(A)\}\{P(B)\})$	
	(c)	$P(A B) = (frac\{P(B A)\}\{P(B)\})$	
	(d)	$P(A B) = (frac\{1\}\{P(B)\})$	
1-h.	N	P(A B) = (frac{1}{P(B)}) faive Baye is?(CO4,K1) Conditional Independence Conditional Dependence	1
	(a)	Conditional Independence	
	(b)	Conditional Dependence	
	(c)	Both a and b	
	(d)	None of the above	
1-i.	– m	is an area of Machine Learning in which about taking suitable action to aximize reward in a particular situation.(CO5,K1)	1
	(a)	Supervised learning	
	(b)	unsupervised learning	
	(c)	Reinforcement learning	
	(d)	None of these	
1-j.	W	Which of the following is an application of reinforcement learning?(CO5,K1)	1
	(a)	Topic modeling	
	(b)	Recommendation system	
	(c)	Pattern recognition	
	(d)	Image classification	
2. Att	empt	all parts:-	
2.a.	W	That is overfitting and underfitting? (CO1,K2)	2
2.b.	S	tate the C4.5 algorithm. how does it build decision trees? (CO2,K2)	2

2.c.	Define Bay	esian Learning	g in machine le	earning?(CC	04,K2)		2	
2.d.	What are so	What are some benefits of Naive Bayes?(CO4,K2)			2			
2.e.	What is De	ep Learning?(CO5,K2)				2	
SECTIO	<u>N-B</u>						30	
3. Answer	r any <u>five</u> of	f the following	:-					
3-a.	What is a h	ypothesis expl	ain most speci	fic and mos	st general hypotl	nesis?(CO1,K2) 6	
3-b.	Describe th	e Candidate E	limination Alg	orithm.(CC	01,K2)		6	
3-c.	Explain line	ear and logistic	cs Regression.	(CO2,K2)			6	
3-d.	Explain Pol						6	
3.e.	Explain the	plain the steps of k-Means Clustering Algorithm. (CO3,K3)					6	
3.f.	write down	the implemen	tation Steps of	Bagging.(C	CO4,K2)		6	
3.g.		inforcement Loiagram.(CO5,F	•	plain Reinf	orcement learning	ng problem	6	
SECTIO	<u>N-C</u>						50	
4. Answe	r any <u>one</u> of	the following	:-					
4-a.		D_S Algorithmamples(CO1,K		ost specific	hypothesis that	fits all the	ill the 10	
	EXAMPLE	COLOR	TOUGHNESS	FUNGUS	APPEARANCE	POISONOUS		
		10.10.10						
	1.	GREEN	HARD	NO	WRINKELD	YES		
	2.	GREEN	HARD	YES	SMOOTH	NO		
	3.	BROWN	SOFT	NO	WRINKLED	NO		
	4.	ORANGE	HARD	NO	WRINKLED	YES		
	5.	GREEN	SOFT	YES	SMOOTH	YES		
	6.	GREEN	HARD	YES	WRINKLED	YES		
	7.	ORANGE	HARD	NO	WRINKLED	YES		
4-b.		* *		-	With the help of of version Space		10	
5. Answer	r any <u>one</u> of	the following	:-					
5-a.							10	

Page 3 of 4

Use the ID3 algorithm, explain how you would construct a

decision tree for the following dataset?(CO2,K3)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- 5-b. Differentiate between linear regression and multiple linear regression. (CO2,K2) 10 6. Answer any <u>one</u> of the following:-
- 6-a. Discuss the KNN model . Given the following dataset with two features—Height (in cm) and Weight (in kg)—and the target variable Class (either "Tall" or "Short"), apply the k-NN algorithm to predict the class of a new data point. Height = 167 cm, Weight = 62 kg (CO3,K3)

Height (cm)	Weight (kg)	Class	
170	65	Tall	
160	55	Short	
180	75	Tall	
155	50	Short	
165	60	Short	
175	70	Tall	
185	80	Tall	

- 6-b. Explain the density based clustering with suitable example.. (CO3,K2)
- 7. Answer any one of the following:-
- 7-a. Write down Similarities and difference Between Bagging and Boosting. (CO4,K2) 10
- 7-b. Explain the bagging technique used in Random Forest. How does this technique help improve the model's performance compared to a single decision tree?(CO4,K2)
- 8. Answer any <u>one</u> of the following:-
- 8-a. What are the main differences between supervised learning and reinforcement learning?(CO5,K2)
- 8-b. What is Q-learning? Explain it with the help of real examples. (CO5,K3)