Printed Page:- 04			Subject Code:- AEC0503							
			Roll. No:							
NC)IDA	INSTITUTE OF ENGINEEDING A	ND TECH	NOI (<u> </u>	CDE	L LATE	D N) A
INC	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)									
		B.T (,		,			
		SEM: V - THEORY EXAMI)			
7 D•	2.1	Subject: Electromagnetic I	Field Theory	and a	Ante	nna	N #	3.4		100
	ie: 3 I ral In	iours structions:					Max	. IVI	arks	: 100
		y that you have received the question p	paper with th	e corr	ect c	ourse.	code	, bro	ınch	etc.
		stion paper comprises of three Section	-							
_		MCQ's) & Subjective type questions.								
		n marks for each question are indicate	_		ide of	each	quest	tion.		
		your answers with neat sketches when uitable data if necessary.	rever necesso	ıry.						
		ly, write the answers in sequential ord	ler.							
	U	should be left blank. Any written mate		olank s	sheet	will n	ot be			
evalu	ated/c	hecked.								
										•
	ΓΙΟΝ-						X			20
	•	all parts:-)				
1-a.		ine integral is used to calculate(CO1,F	(1)	1						1
	(a)	Volume								
	(b)	Area								
	(c)	Length								
	(d)	None of the above								
1-b.	T	he divergence theorem relates(CO1,K								1
	(a)	a line integral over a closed line to a								
	(b)	a surface integral over a closed surfa		_						
	(c)	a surface integral over a closed surfa	ace to a volur	ne inte	egral					
	(d)	None of the above								
1-c.	C	oulomb law is employed in (CO2,K1)								1
	(a)	Electrostatics								
	(b)	Magnetostatics								
	(c)	Maxwell theory								
	(d)	None of the above								
1-d.	U	nit of electric flux is (CO2,K1)								1
	(a)	Coulomb								
	(b)	Weber								
	(c)	Tesla								

	(d)	Weber/m	
1-e.	In	good conductor the attenuation constant is the phase constant. (CO3, K1)	1
	(a)	more than	
	(b)	less than	
	(c)	equal to	
	(d)	not equal to	
1-f.		states that the net power flowing out of a given volume v is equal to the me rate of decrease in the energy stored within v minus the ohmic losses. (CO3, 1)	1
	(a)	Gauss's law	
	(b)	Poynting's theorem	
	(c)	Faraday's law	
	(d)	Stokes's theorem	
1-g.		n ideal source in which the power is radiated equally in all directions is known radiator.(CO4, K1)	1
	(a)	Isotropic	
	(b)	Omni-directional	
	(c)	Directional	
	(d)	Transducer	
1-h.	T	Transducer he power pattern of an antenna is (CO4, K1) Directional Transducer	1
	(a)	Directly proportional to the square of the field pattern	
	(b)	Inversely proportional to the field pattern	
	(c)	Directly proportional to the field pattern	
	(d)	Inversely proportional to the square of the field pattern	
1-i.		he helical antenna working in mode, if circumference of helix is equal to ne wavelength. (CO5, K1)	1
	(a)	Axial mode	
	(b)	Normal mode	
	(c)	Conical mode	
	(d)	Both axial & normal mode	
1-j.	C	assegrain feed is used with a parabolic reflector to (CO5, K1)	1
	(a)	increase the gain of the system	
	(b)	increase the beamwidth of the system	
	(c)	reduce the size of the main reflector	
	(d)	allow the feed to be placed at a convenient point	
2. Att	empt a	all parts:-	
2.a.	D	efine surface area in spherical Coordinate. (CO1, K1)	2
2.b.	St	tate Biot-Savart's law. (CO2,K1)	2

2.c.	Write the Maxwell electromagnetic equations in time-varying fields. (CO3, K2)	2
2.d.	Briefly describe antenna radiation pattern. (CO4, K1)	2
2.e.	Enlist the applications of microstrip antenna. (CO5, K2)	2
SECTI	ION-B	30
3. Ansv	wer any <u>five</u> of the following:-	
3-a.	Explain Cartesian coordinates and write its conversion in Cylindrical and Spherical coordinates. (CO1, K2)	6
3-b.	Convert points P (1,3,5) and T (0, -4,3) from Cartesian to cylindrical and spherical coordinates. (CO1, K2)	6
3-c.	Derive the expression for the electric field intensity for an infinite line charge having uniform charge density ρ_L .(CO2, K3)	6
3-d.	Explain Ampere's circuit law. (CO2, K2)	6
3.e.	Find the radiation resistance of current element, whose overall length is $\lambda/100$ and $\lambda/50$. (CO3, K2)	6
3.f.	Explain the effective aperture of the receiving antenna in context of Poynting theorem.(CO4)	6
3.g.	Discuss about the applications of loop antenna & what is 180-degree ambiguity? How it arises and how is it removed?	6
SECTI	ION-C	50
4. Ansv	wer any <u>one</u> of the following:-	
4-a.	Describe the properties of the curl and determine the curl of vector fields a_x - ya_y + $(4y-z)a_z$, $10a_x$ - $2a_y$ - $11a_z$.(CO1, K2)	10
4-b.	Explain the Laplacian equation in all three coordinate systems and find the Laplacian of the scalar field $V = \rho z^2 \sin 2\phi$. (CO1, K2)	10
5. Ansv	wer any <u>one</u> of the following:-	
5-a.	State and explain Gauss's law. Prove that div $D = \rho_v$ for an electrostatic field, Where D is the electric flux density and ρ_v is the volume charge density. (CO2, K2)	10
5-b.	State and explain the Maxwell's equations in differential and integral form. (CO2, K2)	10
6. Ansv	wer any one of the following:-	
6-a.	Explain Poynting Vector. Derive an expression of Poynting theorem for EM wave and also explain the significance of each term of the expression. (CO3, K1)	10
6-b.	Explain intrinsic impedance of a medium and derive intrinsic impedance for plane waves in lossless dielectrics. (CO3, K2)	10
7. Ansv	wer any <u>one</u> of the following:-	
7-a.	Discuss radio communication link and derive the FRIIS transmission formula mathematically and also path loss. (CO4, K3)	10
7-b.	Explain the antenna aperture in detail and also derive an expression showing the	10

relation between effective aperture and directivity of an antenna. (CO4, K2)

- 8. Answer any one of the following:-
- 8-a. Describe Log periodic antenna with suitable design equations and working. (CO5, K1)
- 8-b. Describe the principle of direction finding by means of a closed loop antenna and give the expression for the induced voltage and field strength for short loop and large loop. (CO5, K2)

REG. TUILY DEC. 2024
REG. TUILY