Printed	d Pag	·
		Roll. No:
N	OID	A INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA
		(An Autonomous Institute Affiliated to AKTU, Lucknow)
		B.Tech SEM: V - THEORY EXAMINATION (2024- 2025)
		Subject: Machine Learning
Time	e: 3 H	v G
Genera	al Ins	tructions:
IMP: V	Verify	that you have received the question paper with the correct course, code, branch etc.
	_	stion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice
_	•	MCQ's) & Subjective type questions.
		n marks for each question are indicated on right -hand side of each question.
		your answers with neat sketches wherever necessary. The suitable data if necessary.
		ly, write the answers in sequential order.
_		should be left blank. Any written material after a blank sheet will not be
		hecked.
SECT	ION-	<u>-A</u> 20
1. Atte	empt a	all parts:-
1-a.	A	pplication of machine learning methods to a large database is called? (CO1, K1)
	(a)	Big data computing
	(b)	Internet of Things
	(c)	Data mining
	(d)	Artificial Intelligence
1 h	` /	
1-b.		earning algorithm for "facial identities for facial expressions" is known as (CO1, 1)
	(a)	Prediction Recognition Pottorns
	(b)	Recognition Patterns
	(c)	Recognizing anomilies
	(d)	Generating patterns
1-c.	ne	neural network was the first and simplest type of artificial neural etwork devised. (CO2, K1)
	(a)	feedbackward neural network
	(b)	Feed neutral Neural network
	(c)	feedforward neural network
	(d)	None of these
1-d.	T	he Euclidean distance between two set of numerical attributes is called ? (CO2,
*		(1)

	(a)	Closeness				
	(b)	Validation Data				
	(c)	Error Rate				
	(d)	None of these				
1-e.	A	mong the following, which one is dimensionality reduction technique. (CO3,	1			
	K1)					
	(a)	Performance				
	(b)	Entropy				
	(c)	Stochastics				
	(d)	PCA				
1-f.	The minimum time complexity for training an SVM is O(n2). According to this fact, what sizes of datasets are not best suited for SVM'? (CO3, K1)		1			
	(a)	Large datasets				
	(b)	Small datasets				
	(c)	Medium sized datasets				
	(d)	Size does not matter				
1-g.	Which of the following are the two key characteristics of the Genetic Algorithm?		1			
	(((CO4, K1)				
	(a)	Crossover techniques and Fitness function				
	(b)	Random mutation and Crossover techniques				
	(c)	Random mutation and Individuals among the population				
	(d)	Random mutation and Fitness function				
1-h.		loop that constantly moves in the direction of growing value that is uphill, an algorithm. (CO4, K1)	1			
	(a)	Up-Hill Search				
	(b)	Hill-Climbing				
	(c)	Hill algorithm				
	(d)	Reverse-Down-Hill search				
1-i.	Choose from the following that are Decision Tree nodes? (CO5, K1)					
	(a)	Decision Nodes				
	(b)	Leaf nodes				
	(c)	Root nodes				
	(d)	All of the mentioned				
1-j.	W	which of the following are the advantages of Decision Trees? (CO5, K1)	1			
	(a)	Possible Scenarios can be added				
	(b)	Use a white box model, If given result is provided by a model				
	(c)	Worst, best and expected values can be determined for different scenarios				
	(d)	All of the mentioned				

2. Atten	npt all parts:-	
2.a.	Draw the Van diagram of relationship among key technologies (AI, ML, Deep Learning, Data science). (CO1, K2)	2
2.b.	Explain Attribute Selection Measure (ASM)? (CO2, K2)	2
2.c.	Discuss the reason behind dropping the unimportant features? (CO3, K2)	2
2.d.	Discuss the examples of optimization? (CO4, K2)	2
2.e.	Describe some real life examples of dynamics in Reiforcement Learning? (CO5, K2)	2
SECTIO	ON-B	30
3. Answ	er any <u>five</u> of the following:-	
3-a.	Differentiate between inductive learning and deductive learning? (CO1, K4)	6
3-b.	Explain regression and classification based on decision theory.(CO1, K21)	6
3-c.	Explain Gradient and Gradient Descent? Explain. (CO2, K2)	6
3-d.	Explain how does the learning rate affect the training of the Neural Network? (CO2, K2)	6
3.e.	Discuss in detail about working of KNN classifier algorithm with suitable example. (CO3, K2)	6
3.f.	Define punctuated equilibrium. Explain its evolution with major evidences. (CO4, K2)	6
3.g.	Describe ID3 algorithm. (CO5, K2)	6
SECTIO	<u>ON-C</u>	50
4. Answ	er any one of the following:-	
4-a.	Illustrate the univariate normal distribution model through the suitable example. (CO1, K2)	10
4-b.	Explain the three stages to build the hypotheses or model in machine learning? (CO1, K2)	10
5. Answ	ver any one of the following:-	
5-a.	Explain Representational Power of Perceptron. (CO2, K2)	10
5-b.	Differentiate between Gradient Descent and Stochastic Gradient Descent. (CO2, K4)	10
6. Answ	er any one of the following:-	
6-a.	Can LDA be used as a multi-class classifier? If so how would it work? (CO3, K2)	10
6-b.	Explain Principal Component Analysis and derive the appropriate equations.(CO3, K2)	10
7. Answ	er any one of the following:-	
7-a.	Explain the operation of Hill climbing algorithm with suitable graph. State its advantages and limitations. (CO4, K2)	10
7-b.	Describe the following: (i) Population, (ii) Chromosomes, (iii) Mutation &	10

Crossover. (CO4, K2)

8. Answer any one of the following:-

8-a.	Differentiate between a Reward and a Value for a given State? Illustrate with	10
	appropriate example. (CO5, K4)	

8-b. Differentiate between CART algorithm and simple ID3 algorithm. (CO5, K4)

