| Printe | d Pag  | ge:- 04 Su                                                                             | bject Code:- AM     | E0701                                   |                    |                                       |               |
|--------|--------|----------------------------------------------------------------------------------------|---------------------|-----------------------------------------|--------------------|---------------------------------------|---------------|
| Time   | a r ag |                                                                                        | oll. No:            | 20701                                   |                    |                                       |               |
|        |        |                                                                                        |                     |                                         |                    |                                       |               |
| 1      | NOID   | A INSTITUTE OF ENGINEERING AN                                                          | TECHNOLOG           | Y, GRE                                  | ATER N             | OID/                                  | <u>—</u> —    |
|        |        | (An Autonomous Institute Affilia                                                       |                     |                                         |                    |                                       |               |
|        |        | B.Tech                                                                                 |                     | 2025                                    |                    |                                       |               |
|        | Cul    | SEM: VII - THEORY EXAMIN                                                               | ,                   | •                                       | ainaanina          | _                                     |               |
| Tim    | e: 3 H | bject: Elements of Flexible Manufacturin                                               | g System and Pro    | cess En                                 | gmeering<br>Max. I |                                       | s: 100        |
|        |        | structions:                                                                            |                     |                                         | 111421. 1          | · · · · · · · · · · · · · · · · · · · | <b>5.</b> 100 |
| IMP:   | Verify | y that you have received the question pape                                             | er with the correc  | t course,                               | code, br           | anch                                  | etc.          |
|        |        | estion paper comprises of three Sections -                                             | A, B, & C. It cons  | ists of M                               | Iultiple C         | hoice                                 | 2             |
| _      |        | (MCQ's) & Subjective type questions.                                                   | : . 1.4 1 1: 1      | C 1                                     |                    |                                       |               |
|        |        | m marks for each question are indicated o<br>e your answers with neat sketches whereve | -                   | e oj eacr                               | i questior         | ι.                                    |               |
|        |        | suitable data if necessary.                                                            | r necessary.        |                                         |                    |                                       |               |
|        |        | ly, write the answers in sequential order.                                             |                     |                                         |                    |                                       |               |
|        |        | should be left blank. Any written materia                                              | l after a blank she | eet will r                              | ot be              |                                       |               |
| evalu  | ated/c | checked.                                                                               |                     |                                         |                    |                                       |               |
| SECT   | TON.   | ·- A                                                                                   |                     |                                         |                    |                                       | 20            |
|        |        | all parts:-                                                                            |                     |                                         |                    |                                       | 20            |
| 1-a.   | •      | What is the primary advantage of FMS in t                                              | erms of production  | on flexib                               | ility? [C          | Ω1.                                   | 1             |
| 1      |        | [1]                                                                                    | ornis or products,  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | inty. [C           | 01,                                   | •             |
|        | (a)    | Limited adaptability                                                                   |                     |                                         |                    |                                       |               |
|        | (b)    | Fixed production processes                                                             |                     |                                         |                    |                                       |               |
|        | (c)    | High customization capability                                                          |                     |                                         |                    |                                       |               |
|        | (d)    | Low variety                                                                            |                     |                                         |                    |                                       |               |
| 1-b.   | V      | What type of flexibility refers to the ability                                         | to change the pro   | oduct m                                 | ix quickly         | y?                                    | 1             |
|        |        | CO1, K1]                                                                               |                     |                                         |                    |                                       |               |
|        | (a)    | Volume flexibility                                                                     |                     |                                         |                    |                                       |               |
|        | (b)    | Product flexibility                                                                    |                     |                                         |                    |                                       |               |
|        | (c)    | Routing flexibility                                                                    |                     |                                         |                    |                                       |               |
|        | (d)    | Process flexibility                                                                    |                     |                                         |                    |                                       |               |
| 1-c.   | C      | Coding and classification systems are used                                             | in GT for:[CO2,     | K1]                                     |                    |                                       | 1             |
|        | (a)    | Tracking the location of different mach                                                | ine parts           |                                         |                    |                                       |               |
|        | (b)    | Managing inventory of machine parts                                                    |                     |                                         |                    |                                       |               |
|        | (c)    | Identifying and organizing similar macl                                                | nine parts into far | nilies                                  |                    |                                       |               |
|        | (d)    | Analyzing the efficiency of different m                                                | achining processe   | es                                      |                    |                                       |               |
| 1-d.   | T      | The methods commonly used for cell form                                                | ation in GT inclu   | de: [CO                                 | 2, K1]             |                                       | 1             |
|        | (a)    | Mathematical programming and graph                                                     | theoretic models    |                                         |                    |                                       |               |

|                                                                                       | (b)    | Genetic algorithms and neural networks                                                                               |   |
|---------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------|---|
|                                                                                       | (c)    | Statistical analysis and regression models                                                                           |   |
|                                                                                       | (d)    | Simulation and optimization techniques                                                                               |   |
| 1-e.                                                                                  | Ac     | ecceptance testing in the context of an FMS implementation aims to: [CO3, K1]                                        | 1 |
|                                                                                       | (a)    | Assess employee performance                                                                                          |   |
|                                                                                       | (b)    | Determine the market viability of the products                                                                       |   |
|                                                                                       | (c)    | Verify the proper functioning of the system                                                                          |   |
|                                                                                       | (d)    | Test the durability of the equipment                                                                                 |   |
| 1-f.                                                                                  |        | ata visualization techniques in manufacturing data systems for an FMS help [CO3, K1]                                 | 1 |
|                                                                                       | (a)    | Enhancing aesthetics of product designs                                                                              |   |
|                                                                                       | (b)    | Facilitating realtime monitoring and control                                                                         |   |
|                                                                                       | (c)    | Ensuring proper data backup and disaster recovery                                                                    |   |
|                                                                                       | (d)    | Minimizing data storage requirements                                                                                 |   |
| 1-g.                                                                                  |        | hat are the advantages of Computer-Aided Process Planning (CAPP) over nventional process planning methods? [CO4, K1] | 1 |
|                                                                                       | (a)    | Increased flexibility and adaptability                                                                               |   |
|                                                                                       | (b)    | Improved communication between design and manufacturing                                                              |   |
|                                                                                       | (c)    | Enhanced accuracy and efficiency                                                                                     |   |
|                                                                                       | (d)    | All of the above                                                                                                     |   |
| 1-h. Which principle does a Generative CAPP system rely on? [CO4, K1]                 |        | hich principle does a Generative CAPP system rely on? [CO4, K1]                                                      | 1 |
|                                                                                       | (a)    | Predefined templates and rules                                                                                       |   |
|                                                                                       | (b)    | Manual input from process planners                                                                                   |   |
|                                                                                       | (c)    | Utilization of algorithms and rules                                                                                  |   |
|                                                                                       | (d)    | Statistical analysis of production data                                                                              |   |
| 1-i. The primary function of an Automated Storage and Retrieval System (to: [CO5, K1] |        | ne primary function of an Automated Storage and Retrieval System (AS/RS) is [CO5, K1]                                | 1 |
|                                                                                       | (a)    | Optimize energy consumption in warehouses                                                                            |   |
|                                                                                       | (b)    | Improve communication between departments                                                                            |   |
|                                                                                       | (c)    | Efficiently store and retrieve goods                                                                                 |   |
|                                                                                       | (d)    | Enhance workplace safety                                                                                             |   |
| 1-j.                                                                                  |        | Computer-Aided Process Planning (CAPP), the backward approach volves: [CO5, K1]                                      | 1 |
|                                                                                       | (a)    | Starting with the final product design and working backwards                                                         |   |
|                                                                                       | (b)    | Sequentially planning each manufacturing process step                                                                |   |
|                                                                                       | (c)    | Utilizing algorithms to automate process planning tasks                                                              |   |
|                                                                                       | (d)    | Evaluating process feasibility based on available resources                                                          |   |
| 2. Atte                                                                               | empt a | ll parts:-                                                                                                           |   |

| 2.a.          | How can FMS be classified based on their characteristics? [CO1, K2]                                                                                 | 2  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.b.          | What is mean by mono code and poly codes structures? [CO2,K2]                                                                                       | 2  |
| 2.c.          | What are the considerations for ensuring seamless data flow between different components of an FMS? [CO3, K1]                                       | 2  |
| 2.d.          | Describe the advantages and challenges of using mathematical programming models for determining optimal index positions in manufacturing. [CO4, K2] | 2  |
| 2.e.          | Discuss the advantages and disadvantages of conveyors in material handling systems compared to manual handling methods.[CO5, K1]                    | 2  |
| <b>SECTIO</b> | 0N-B                                                                                                                                                | 30 |
| 3. Answe      | er any <u>five</u> of the following:-                                                                                                               |    |
| 3-a.          | Provide examples of processing and quality assurance equipment used in an FMS. [CO1, K2]                                                            | 6  |
| 3-b.          | Explain the concept of quality assurance in an FMS. [CO1,K2]                                                                                        | 6  |
| 3-c.          | Explain the effect of machining parameters on production rate? [CO2, K2]                                                                            | 6  |
| 3-d.          | Explain the different optimization models which help in improving productivity in manufacturing? [CO2, K3]                                          | 6  |
| 3.e.          | How does the choice of manufacturing data system impact the overall performance of an FMS? [CO3, K2]                                                | 6  |
| 3.f.          | Describe the sequential approach to tolerance allocation and its steps involved in determining manufacturing tolerances. [CO4, K2]                  | 6  |
| 3.g.          | Explain how CAD-based CAPP systems leverage geometric and engineering data to generate accurate and optimized process plans. [CO5, K2]              | 6  |
| <b>SECTIO</b> | ON-C                                                                                                                                                | 50 |
| 4. Answe      | er any <u>one</u> of the following:-                                                                                                                |    |
| 4-a.          | Explain the Working and principle of Co-ordinate Measuring Machine (CMM)? [CO1, K2]                                                                 | 10 |
| 4-b.          | What are the challenges in maintaining and ensuring reliability in an FMS? [CO1,K2]                                                                 | 10 |
| 5. Answe      | er any <u>one</u> of the following:-                                                                                                                |    |
| 5-a.          | Explain the process of solving optimization models for machining processes? [CO2, K2]                                                               | 10 |
| 5-b.          | How does GT facilitate the implementation of just-in-time (JIT) production? [CO2, K2]                                                               | 10 |
| 6. Answe      | er any <u>one</u> of the following:-                                                                                                                |    |
| 6-a.          | Explain the concept of data security and privacy in manufacturing data systems. [CO3, K2]                                                           | 10 |
| 6-b.          | How does data integration contribute to the synchronization of operations within an FMS? [CO3, K2]                                                  | 10 |
| 7. Answe      | er any <u>one</u> of the following:-                                                                                                                |    |
|               |                                                                                                                                                     |    |

| 7-a.     | Describe the principle of a Generative CAPP system and how it differs from conventional process planning methods. [CO4, K2]                                   | 10 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7-b.     | Explain the concept of optimal index positions in manufacturing and their significance in achieving efficient and synchronized production sequences.[CO4, K2] | 10 |
| 8. Answe | er any <u>one</u> of the following:-                                                                                                                          |    |
| 8-a.     | Explain the forward approach in CAPP and its advantages in terms of early detection of potential manufacturing issues. [CO5, K2]                              | 10 |
| 8-b.     | Explain the concept of Automated Guided Vehicles (AGVs) and their applications in material handling and logistics. [CO5, K2]                                  | 10 |

