

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Minor Degree / Specialization

in

Artificial Intelligence & Machine Learning
School of Computer Science in Emerging Technologies

(Effective from the Session: 2022-23)

Minor Degree / Specialization Artificial Intelligence & Machine Learning

EVALUATION SCHEME

Sl. No.	Subject Codes	Subject Name		Period	ls		Evalua	ntion Scheme		En Seme		Total	Credit	Sem
			L	Т	P	AA	QZ	TOTAL	PS	TE	PE			
1	AMSML0301	Introduction to AI & Machine Learning	3	0	0	25	25	50		100		150	3	III
2	AMSML0401	Introduction to Data Analytics	3	0	0	25	25	50		100		150	3	IV
3	AMSML0501	Deep Learning and Neural Network	3	0	0	25	25	50		100		150	3	V
4	AMSML0601	Specific topics in Artificial Intelligence	3	0	0	25	25	50		100		150	3	VI
5	AMSML0701	Applications of AI	3	0	0	25	25	50		100		150	3	VII
6	AMSML0351	Introduction to AI & Machine Learning Lab	0	0	2				25		25	50	1	III
7	AMSML0451	Introduction to Data Analytics Lab	0	0	2				25		25	50	1	IV
8	AMSML0551	Deep Learning and Neural Network Lab	0	0	2				25		25	50	1	V
9	AMSML0751	Capstone Project	0	0	2				50		50	100	2	VII
		GRAND TOTAL										1000	20	

Branch wise Minor Degree / Specialization Details

S.no.	Name of Minor Degree/Specialization	Streams/Branches of B.Tech. Programs whose students are eligible to opt for the Minor Degree	Streams/Branches of B.Tech. Programs whose students are eligible to opt for the Specialization
1	Artificial Intelligence and Machine Learning	All Branches except CSE and EC related Branches	CSE and EC related Branches
2	Data Science	All Branches except CSE and EC related Branches	CSE and EC related Branches
3	E-mobility	All Branches except ME related Branches	Only ME Branch
4	VLSI Design	All Branches except EC related Branches	Only EC Branch

Guidelines for assessment of Minor Degree / Specialization Program

For Theory Paper

Intern	al (50)	External (100)
AA (25)	QZ(25)	External (100)
5 Assignments of 5 marks each	5 Quiz papare of 5 marks each	Theory Examination will be
3 Assignments of 3 marks each	3 Quiz papers of 3 marks each	Conduct at the end of Semester

For Practical Paper

Internal (25)	External (25)
On the basis of continuous Assessment	Practical Examination will be Conduct at the end of Semester

Course code	AMSML0301	LTP	Credit
Course title	INTRODUCTION TO AI & MACHINE	3 0 0	3
	LEARNING		
ML. Introduce the	etive: To review and strengthen important mathematical concerned concept of learning patterns from data and develop a strong the late of the art Machine Learning algorithms.		
Pre-requisites	S: Basics of a programming language, Statistics, Mathematics, Analytic	al Skills	
	Course Contents / Syllabus		
UNIT-I	Introduction to AI		12 Hours
as Rules, Repres	al Intelligence, Defining Al techniques, Using Predicate Logic, and Reenting simple facts in logic, Computable functions, and predicates, Predic Programming, Mathematical foundations: Matrix Theory and	ocedural v	Declarative
UNIT-II	Idea of Machine Learning		8 Hours
Idea of Machine and Unsupervise	s learning from data, Classification of problem -Regression and Classification.	assification	, Supervised
UNIT-III	Linear Regression		10 Hours
-	tation for single variable, Single variable Cost Function, Gradient Decent in practice.	ent Decen	for Linear
UNIT-IV	Logistic Regression		7 Hours
	Hypothesis Representation, Decision Boundary, Cost function, A ion (One vs All), Problem of Overfitting.	dvanced C	ptimization,
UNIT-V	Clustering Algorithms		5 Hours
Discussion on cl	ustering algorithms and use-cases centered around clustering and cla	ssification.	
Course outco	me: After completion of this course students will be able to		
CO 1	Design and implement machine learning solutions classification, regression, and clustering problems.	to	K1
CO 2	Evaluate and interpret the results of the different ML technique	es.	K4
CO 3	Design and implement various machine learning algorithms in range of Real-worldapplications.	ı a	K3
CO 4	Apply different machine learning algorithms.		K4
CO 5	Analyze data models to study patterns		K2
Textbooks:			
1) Tom Mitchel	l, Machine Learning, McGraw Hill, 2017.		

- 2) Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2011.
- 3) T. Has tie, Tibsherany, J. Friedman. The Elements of Statistical Learning, 2e, 2011.

Reference Books:

- 1) Saroj Kaushik, Arti ficial Intelligence, Cengage Learning, 1st Edition 2011.
- 2) Anindita Das Bhattacharjee, "Practical Workbook Artificial Intelligence and SoftComputing for beginners, Shroff Publisher-X team Publisher.
- 3) Yuxi (Hayden) Liu, "Python Machine Learning by Example", Packet PublishingLimited, 2017.

	AMSML0401	LTP	Credit
Course Title	INTRODUCTION TO DATA ANALYTICS	300	3

Course objective: Provide you with the knowledge and expertise to become a proficient data scientist. Demonstrate an understanding of statistics and machine learning concepts that are vital for data science; Produce Python code to statistically analyze a dataset; Critically evaluate data visualizations based on their design and use for communicating stories from data;

Pre-requisites: Basics of a programming language, Statistics, Mathematics, Analytical Skills.

Course Contents / Syllabus

UNIT-I Introduction to Data Science

7 HOURS

Introduction to Data Science, Different Sectors using Data science, Purpose and Components of Python in Data Science.

UNIT-II Processes of Data Analytics

7 HOURS

Data Analytics Process, Knowledge Check, Exploratory Data Analysis (EDA), EDA- Quantitative technique, EDA- Graphical Technique, Data Analytics Conclusion, and Predictions.

UNIT-III Feature Generation and Selection

11 HOURS

Feature Generation and Feature Selection (Extracting Meaning from Data)- Motivating application: user (customer) retention- Feature Generation (brainstorming, the role of domain expertise, and place for imagination)- Feature Selection algorithms.

UNIT-IV Data Visualisation

10 HOURS

Data Visualization- Basic principles, ideas and tools for data visualization, Examples of inspiring (industry) projects- Exercise: create your own visualization of a complex dataset.

UNIT-V Application of Data Science

7 HOURS

Applications of Data Science, Data Science and Ethical Issues- Discussions on privacy, security, ethics- A look back at Data Science- Next-generation data scientists.

Course outcome: After completion of this course students will be able to

CO1	Explain how data is collected, managed and stored for data science.	K1
CO2	Understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists.	K2
CO3	Apply various processes to extract features of data.	K3
CO4	Understand the key techniques and theory behind data visualization.	K2
CO5	Understand key applications of data science that are commonly linked to ethical issues.	K2

Textbooks:

- 1. Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Datasets. v2.1, Cambridge University Press.
- 2. Jake Vander Plas, Python Data Science Handbook, Shroff Publisher Publisher /O'Reilly Publisher

Media.

3. Philipp Janert, Data Analysis with Open Source Tools, Shroff Publisher Publisher /O'Reilly Publisher Media.

Reference books:

- 1. Jo e l Grus, Data Science from Scratch, Shroff Publisher Publisher /O'Reilly Publisher Me dia
- 2. Annalyn Ng, Kenneth Soo, Numsense! Data Science for the Layman, Shroff Publisher Publisher

Course code	AMSML0501	L	Tl	P	Credits
Course title	DEEP LEARNING AND NEURAL NETWORK	3	0	0	3
•	Ctive: To strengthen important Mathematical concepts required for E	Deep lear	rning	g and	neural
	a detailed insight into advanced algorithms of ML. 28: Basics of a programming language, Statistics, Mathematics, Anal	vitical Cl	zille		
1 re-requisit		yucai Si	XIIIS		
	Course Contents / Syllabus				
UNIT-I	NEURAL NETWORK				8 Hours
Information flo	w in a neural network, understanding basic structure, and ANN.				
UNIT-II	TRAINING NEURAL NETWORK				8 Hours
Training a Neur	al network, how to determine hidden layers, recurrent neural netwo	ork.			
UNIT-III	CONVOLUTIONAL NEURAL NETWORK				10 Hours
Convolutional r	eural networks, image classification, and CNN.				
UNIT-IV	RECURRENT NEURAL NETWORK				8 Hours
RNN and LSTN	Is. Applications of RNN in real world.				
UNIT-V	TENSORFLOW AND KERAS				9 HOURS
Creating and c	leploying networks using tensorflow and keras.				
Course outco	ome: After completion of this course students will be able to				
CO1 Unders	tand the basics of Neural Networks.				K4
CO2 Analyz	Analyze ANN model and understand the ways of accuracy measurement.				K4
CO3 Develo	Develop a convolutional neural network for multi-class classification in images				K6
CO4 Apply	Apply RNNs to Time Series Forecasting, NLP, Text and Image Classification.				
CO5 Creati	5 Creating the networks using tensorflow and keras.				
Textbooks:					

1. John Paul Mueller, Luca Massaron, Deep Learning for Dummies, John Wiley & Sons

Course code	AMSML0601	L	T	P	Credits	
Course title	SPECIFIC TOPICS IN ARTIFICIAL INTELLIGENCE	3	0	0	3	
Course objective: To give fundamental knowledge to the students so that they can understand what the Al is and study important topics related to the field.						

Pre-requisites: Basics of a programming language, Statistics, Mathematics, Analytical Skills

Course Contents / Syllabus

UNIT-I INTRODUCTION TO DEEP LEARNING 8 Hours

Bayesian Filtering; Recurrent Neural Networks, Deep Neural Networks, Deep Reinforcement Learning.

UNIT-II SPECIAL NETWORKS

8 Hours

Self- Play Networks, Generative Adversarial Networks, Learning from Concept-Drifting Data Streams.

UNIT-III | SIGNAL PROCESSING

8 Hours

Audio Signal Processing Basics, mir toolbox contains many useful audios processing library functions, VOICEBOX: Speech Processing Toolbox for MATLAB, Audio processing in Matlab.

UNIT-IV KNOWLEDGE-BASED SYSTEMS

8 Hours

Architectures for second-generation knowledge-based systems, Distributed Al and its applications.

UNIT-V NEUROCOMPUTING

8 HOURS

An introduction to neurocomputing and its possible role in Al, The role of uncertainty measures and principles in Al.

Course outcome: After completion of this course students will be able to

CO1	Design and implement Artificial Neural networks.	K1
CO2	Decide when to use which type of NN.	K2
CO3	Implement signal processing using MATLAB	K4
CO4	Understand Knowledge representation and Distributed AI along with its applications.	K2
CO5	Understand basic concepts of Neuro Computing.	K2

Textbooks:

- 1. Dr. Nilakshi Jain, Artificial Intelligence: Making a System Intelligent, John Wiley &Sons.
- 2. Artificial Intelligence & Soft Computing for Beginners, 3rd Edition-2018, by Anindita

Das, Shroff Publisher Publisher.

Reference Books:

1. New Artificial Intelligence (Advanced), Takashi Mae da and Furnia Aoki, Ohmsha Publisher.

Course code	AMSML0701	LTP	Credits	
Course title	APPLICATIONS OF AI	3 0 0	3	
Course objectiv	e:			
To give deep know	rledge of Al and how Al can be applied in variou	asfields to make the life of	easy.	
Pre-requisites:	Basics of a programming language, Statistics, Mathen	natics, Analytical Skills		
	Course Contents / Syllabus	S		
UNIT-I	NATURAL LANGUAGE PROCESSIN	G	8 Hours	
Linguistic aspects of Intelligence (AI) in	f natural language processing, A.I. And Quantum Cobusiness.	omputing, Applications of	Artificial	
UNIT-II	APPLICATIONS TO REAL LIFE		8 Hours	
_	on using human face and body language, Al-based sy, Al in Sales and Customer Support.	stem to predict the disease	es early, Smart	
UNIT-III	ROBOTICS PROCESSES		8 Hours	
Robotic Processes	Automation for supply chain management.			
UNIT-IV	AI MODELLING		8 Hours	
AI-Optimized Hard	ware, Digital Twin i.e. Al Modelling, Information To	echnology & Security usin	ıg Al.	
UNIT-V	BLOCKCHAIN IN AI		8 Hours	
Recent Topics in A	/ ML: Al/ML in Smart solutions, Al/ML in Social Pr	oblems handling, Blockel	nain and Al.	
Course outcome	After completion of this course students will be ab	le to		
CO1 Design and	l implement AI		K1	
CO2 Decide wh	en to use which type of AI.		K2	
CO3 Understand	Understand automation and robotics			
CO4 Implement	AI Models and Understand Security Concepts in AI		K4	
CO5 Understand	d the concepts of Blockchain Technology.		K2	
			i	

- 1. Sameer Dhanrajani, AI and Analytics, Accelerating Business Decisions, John Wiley & Sons.
- 2. Life 3.0: Being Human in the Age of Artificial Intelligence by Max Tegmark, published Jul y 2018.

Reference Books:

1. Artificial Intelligence in Practice: How 50 Successful Companies Use d AI and Machine Learning to Solve ProblemsBernard Marr, Matt Ward , Wiley.

Course code	AMSML0351	LTP	Credit
Course title	INTRODUCTION TO AI & MACHINE LEARNING LAB	0 0 2	1
List of Experin	nents:		
Sr. No.	Name of Experiment		CO
1	Implementation of logical rules in Python.		CO1
2	Using any data apply the concept of: • Linear regression • Gradient decent • Logistic regression		CO1
3	To add the missing value in any data set.		CO2
4	Perform and plot under fitting and overfitting in a data set.		CO2
5	Implementation of clustering and classification algorithms.		CO3
Lab Course O	utcome: After completion of this course students will be able to		CO
CO 1	Understand various AI Techniques.		K2
CO 2	Understand the clustering models.		K1
CO 3	Implement classification models.		К3

	AMSML0451 LTP	Credi			
	INTRODUCTION TO DATA ANALYTICS LAB 0 0 2	1			
ist of Expe	riments:				
S.No.	Name of Experiment				
	Class and Methods	CO1			
1	Python program to demonstrate instantiating a class.				
2	Python program to demonstrate use of class method and static method				
3	Python program to implement constructors.				
4	Python program to show that the variables with a value assigned in the class declaration, are class variables and variables inside methods and constructors are instance variables.				
5	Python program to create Bank-account class with deposit, withdraw function	CO1			
	Inheritance				
6	Python program to demonstrate single inheritance	CO1			
7	Python program to demonstrate multilevel inheritance	CO1			
8	Python program to demonstrate multiple inheritance	CO1			
9	Python program to demonstrate hierarchical inheritance	CO1			
10	Python program to demonstrate hybrid inheritance	CO1			
	Polymorphism				
11	Python program to demonstrate in-built polymorphic function				
12	Python program to demonstrate user defined polymorphic functions	CO1			
13	Python program to demonstrate method overriding	CO1			
	Functional Programming				
14	Python program to demonstrate working of map	CO2			
15	Python program to demonstrate working of filter	CO2			
16	Python program to demonstrate working of reduce	CO2			
17	Python program to demonstrate immutable data types	CO2			
18	Python program to demonstrate Monkey Patching in Python				
19	Python program to demonstrate decorators with parameters in python				
20	Python program to demonstrate conditional decorators	CO3			
	Course outcome: At the end of course, the student will be able to				
CO 1	Write programs to create classes and instances in python and implement the concept of inheritance and polymorphism using python.				
CO 2	Write programs using functional programming in python.	K3			
CO 3	Write programs to create GUI-based Python applications and to solve real-world problems.	K4			

Course c	ode AMSML0551	LTP	Credit		
Course to	itle DEEP LEARNING AND NEURAL NETWORK LAB				
List of E	xperiments:				
Sr. No.	Name of Experiment				
1	Introduction to Kaggle and h ow it can be used to enhance visibility.				
2	Build general features to build a mode l for text analytics.				
3	Build and deploy your own deep neural network on a website using tensor flow.				
Lab Course Outcome: After completion of this course students will be able to					
CO 1	Understand various AI Techniques.		K2		
CO 2	Understand the clustering models.		K1		
CO 3	Implement classification models.		К3		