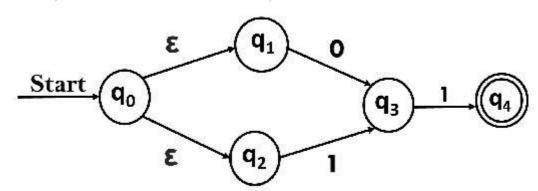
Drinted I	Page:- 05 Subject Code:- AMICSE0404					
i illitea i	Roll. No:					
	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA					
(An Autonomous Institute Affiliated to AKTU, Lucknow)						
M.Tech (Integrated)						
	SEM: IV - THEORY EXAMINATION (2023 -2024)					
	Subject: Theory of Automata and Formal Languages					
Time: 3	Hours Max. Marks: 100					
General	Instructions:					
•	ify that you have received the question paper with the correct course, code, branch etc.					
	uestion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice					
	s (MCQ's) & Subjective type questions.					
	2. Maximum marks for each question are indicated on right -hand side of each question.3. Illustrate your answers with neat sketches wherever necessary.					
	e suitable data if necessary.					
	ably, write the answers in sequential order.					
-	eet should be left blank. Any written material after a blank sheet will not be					
evaluatea	d/checked.					
	SECTION A 20					
1. Attem	pt all parts:-					
1-a.	Mealy and Moore machine can be categorized as: (CO1)					
	(a) Inducers					
	(b) Transducers					
	(c) Turing Machines					
	(d) Linearly Bounder Automata					
1-b.	A Language for which no DFA exist is a (CO1) 1					
	(a) Regular Language					
	(b) Non-Regular Language					
	(c) May be Regular					
	(d) Cannot be said					
1-c.	A language is regular if and only if (CO2)					
	(a) accepted by DFA					
	(b) accepted by PDA					
	(c) accepted by LBA					
	(c) accepted by Lb. (

	(d) accepted by Turing machine	
1-d.	Which of the following is not a regular expression? (CO2)	1
	(a) [(a+b)*-(aa+bb)]*	
	(b) [(0+1)-(0b+a1)*(a+b)]*	
	(c) (01+11+10)*	
	(d) (1+2+0)*(1+2)*	
1-e.	A grammar that produce more than one parse tree for same sentence is called	1
	: (CO3)	
	(a) Ambiguous	
	(b) Unambiguous	
	(c) Regular	
	(d) None	
1-f.	Type-3 grammars generatelanguages. (CO3)	1
	(a) Regular	
	(b) context-free	
	(c) context-sensitive	
	(d) All of above	
1-g.	Which of the following language over {a , b, c } is accepted by deterministic	1
	push down automata ? (CO4)	
	(a) { w c w ^R / w \in (a , b)* }	
	(b) { $ww^R / w \in \{a, b, c\}^* \}$	
	(c) { $a^n b^n c^n / n >= 0$ }	
	(d) { w / w is palindrome {a , b , c}	
1-h.	A language L is said to be a deterministic context free language if and only if	1
	(CO4)	
	(a) There exists a dpda M such that L=L(M)	
	(b) There exists a dpda M such that L≠L(M)	
	(c) Both A and B	
	(d) None of the above	
1-i.	Turing Machine consist of: (CO5)	1
	(a) Input Tape	
	(b) Blank Symbol	
	(c) Tape head	

	(d) All of these				
1-j.	If Turing machine accepts all the words of the language L and rejects or loops for other words, which are not in L, then L is said to be (CO5)	1			
	(a) recursively enumerable				
	(b) recursive				
	(c) context free language (cfl)				
	(d) none of them				
2. Attem	2. Attempt all parts:-				
2.a.	Define relationship between grammar and language in theory of computation. (CO1)	2			
2.b.	Write regular expression for language over $\Sigma = \{0, 1\}$ where every string contains exactly three 0's (CO2)	2			
2.c.	Explain the concept of ambiguity with example. (CO3)	2			
2.d.	Define 2 Stack PDA . (CO4)	2			
2.e.	Explain Church's Thesis. (CO5)	2			
	SECTION B	30			
3. Answe	er any <u>five</u> of the following:-				
3-a.	Design DFA for the following Language. (CO1)	6			
	a) L = {w : Na(w) <= 3, w \in (a ,b)*}				
	b) L= { w : IwI = 2, w \in (a ,b)*}				
3-b.	Draw a DFA to accept string of 0's and 1's ending with the string 011. (CO1)	6			
3-c.	State and prove pumping lemma theorem of the regular sets. (CO2)	6			
3-d.	Design a Right Linear Grammar for a language L= all strings containing even number of a's over an alphabet (a,b). (CO2)	6			
3.e.	Simplify the following context free grammar. (Here, Λ stands for epsilon (ϵ)). (CO3) $S \rightarrow TUV$ $T \rightarrow aTb \ / \Lambda$ $U \rightarrow cU \ / \ \Lambda$ $V \rightarrow aVcW$ $W \rightarrow bW \ / \ \Lambda$	6			
3.f.	Explain string acceptance by PDA using final state and using empty stack. (CO4)	6			
3.g.	Design a Turing machine which recognizes the language $L = \{ a^n b^n \mid n \ge 1 \}$	6			


}. (CO5)

SECTION C

50

4. Answer any one of the following:-

4-a. Convert epsilon-NFA to NFA without epsilon . (CO1) 10

4-b. Design DFA for Following Languages: (CO1)

- 10
- (a) Design a FA with $\Sigma = \{0, 1\}$ which accepts those string which starts with 0 and ends in 1.
- (b) Draw a DFA that accepts a language L over input alphabets $\Sigma = \{a, b\}$ such that L is the set of all strings that does not contain 'ba' as substring.
- (c) Design a FA with $\Sigma = \{0, 1\}$ that accepts those string where number of 1's are even.
- (d) Design a FA with $\Sigma = \{0, 1\}$ accepts the only input 101.

5. Answer any one of the following:-

- 5-a. Explain Closure properties of Regular Expression. (CO2)

 10

 Prove that the Union, Intersection and compliment of regular language is regular
- 5-b. Construct a regular grammar G generating the regular set represented 10 by (CO2)
 - i) P=a*b(a+b)*
 - ii) P= ab*(a+b)

6. Answer any one of the following:-

6-a. Discuss the Chomsky Normal Form . Change the following grammar into 10 Chomsky Normal Form (CNF). (CO3)

S ---> abSb / a / aAb

A ----> bS / aAAb

6-b. Design Left Most Derivation and Right Most Derivation and Parse Tree for the given grammar (CO3)

 $E \rightarrow E+T/T$

 $T \rightarrow T*F/F$

 $F \rightarrow (E)/id$

7. Answer any one of the following:-

7-a. Compare Deterministic PDA with Non-deterministic PDA. Construct the 10 Pushdown Automata for the following language : (CO4)

$$L = \{ a^n b^{n+1} / n = 1,2,3 \}$$

7-b. Compare Deterministic and Non deterministic PDA. Is it true that non 10 deterministic PDA is more powerful than deterministic PDA? Justify your answer. (CO4)

8. Answer any one of the following:-

- 8-a. Explain any two of the following: (CO5)
 - (i) Universal Turing Machine
 - (ii) Recursively Enumerable Language
 - (iii) Halting Problem
 - (iv) Post's Correspondence Problem
- 8-b. Design a Turing machine which recognizes the language consisting of all 10 strings of 0s whose length is a power of 2. i.e., it decides the language $L = \{0^n 2^n | n \ge 0\}$. (CO5)