	•		
Printed Page	::- 05	Subject Code:- ACSBS0205	
		Roll. No:	
NOII	DA INSTITUTE OF ENGINEERING	AND TECHNOLOGY, GREATER NOIDA	
	(An Autonomous Institute A		
	В.Те	ech	
	SEM:II CARRY OVER THEORY EX	(AMINATION- AUGUST 2023	
	Subject: Line	ear Algebra	
Time: 3 Hou	ırs	Max. Marks: 10)0
General Inst	ructions:		
IMP: Verify the	at you have received the question pa	per with the correct course, code, branch etc.	
1. This Question	on paper comprises of three Sect	tions -A, B, & C. It consists of Multiple Choice	ce
Questions (MC	Q's) & Subjective type questions.		
2. Maximum n	narks for each question are indicated	d on right -hand side of each question.	
3. Illustrate yo	our answers with neat sketches where	ever necessary.	
4. Assume suit	table data if necessary.		
5. Preferably,	write the answers in sequential orde	r.	
6. No sheet	should be left blank. Any writte	n material after a blank sheet will not b	Эе
evaluated/che	cked.	1011	
	SECTIO	N A 2	0
1. Attempt a	ll parts:-		
1-a.			1
Fine	If the adjoint of a matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. (CO1)	-
	[5 10]		
	(a) 3 6		
	4 -2]		
	(b) -3 1		
	-4 -2]		
	(c) $\begin{bmatrix} -3 & -1 \end{bmatrix}$		
	(d) None of these		
1-b. If ro	ows and columns of the determina	nts are interchanged, then its value	1
	(CO1)		
	(a) remains unchanged		
	(b) becomes change		
	_		
	(c) its doubled		

(d) none of these

1-c.	The rank of matrix $A = \begin{bmatrix} 5 & 10 \\ 3 & 6 \end{bmatrix}$ is (CO2)	1
	(a) 6	
	(b) 5	
	(c) 1	
	(d) none of these	
1-d.	If the system of equations $x+2y-3z=1$, $(p+2)z=3$, $(2p+1)y+z=2$ is inconsistent then the value of p is (CO2)	1
	(a) -2	
	(b) -1/2	
	(c) 0	
	(d) none of these	
1-e.	The null space of linear transformation from R ³ into R ³ defined as (CO3)	1
	(a) (1, 2, 3)	
	(b) (1, 0, 0)	
	(c) (0, 1, 0)	
	(d) (0, 0, 0)	
1-f.	If α and β are orthogonal unit vectors then distance between α and β is ?	1
	(CO3) (a) 1 (b) 0 (c) $\sqrt{2}$ (d) 2	
1-g.	A square matrix A is positive if A is symmetric matrix and all the eigenvalues are (CO4)	1
	(a) Positive	
	(b) Negative	
	(c) Imaginary	
	(d) None of these	
1-h.	If A is an unitary matrix, then $ A $ is CO 4	1
	(a) 1	
	(b) -1	
	(c) ± 1	

(d) None of these

1-i. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 then the Eigen value of AA^T are (CO5)

- (a) 9,9
- (b) 1,1
- (c) 1,9
- (d) None of these

1-j. If
$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$
 then square root of Eigen value of A^TA are (CO5)

- (a) $\sqrt{45}$, $\sqrt{5}$
- (b) $\sqrt{5}$, $\sqrt{5}$
- (c) $\sqrt{40}$ $\sqrt{5}$
- (d) None of these

2. Attempt all parts:-

2.a.
$$A = \begin{bmatrix} 5 & 2 \\ 3 & -6 \end{bmatrix}$$
 as a sum of symmetric and skew symmetric matrix. (CO1)

2.b. If the sytem of equations $\lambda x + y + z = 0$, $-x + \lambda y + z = 0$, $-x - y + \lambda z = 0$ has a non zero

If the system of equations $\lambda x + y + z = 0$, $-x + \lambda y + z = 0$, $-x - y + \lambda z = 0$ has a non zero 2.b. solution, then find the possible value of λ . (CO2)

In an inner product space V(F), prove that $(a\alpha + b\beta, \gamma) = a(\alpha, \gamma) - b(\beta, \gamma)$. (CO3) 2.c. 2

If A is Hermitian matrix then prove that iA is skew Hermitian matrix. 2.d. 2

2.e. If
$$A = \begin{bmatrix} 2 & 0 \\ 3 & 5 \end{bmatrix}$$
 then find the square root of the Eigen value of A. (CO5)

SECTION B

1

1

2

2

30

3. Answer any five of the following:-

3-a. Find the inverse of the matrix by using E – transformation, where
$$A = \begin{bmatrix} i & -1 & 2i \\ 2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
. (CO1)

3-b. Solve by Cramer's rule:
$$x+y+z=2$$
, $2x+y+3z=9$ and $x-3y+z=10$ (CO1)

3-c. Solve by LU decomposition method:
$$3x+y+z=4$$
, $x+2y+2z=3$, $2x+y+3z=4$. (CO2)

3-d. Solve the homogeneous system of equations: (CO2)
$$x_1 + 3x_2 + 2x_3 = 0,$$

$$2x_1 - x_2 + 3x_3 = 0,$$

$$3x_1 - 5x_2 + 4x_3 = 0$$
,

$$x_1 + 17x_2 + 4x_3 = 0$$

- If u and v are any two vectors in an inner product space V. show that II u +v II² 3.e. 6 + II u - v II 2 =2II u II 2 +2II v II 2 .
- 3.f. Prove that 6

$$U = \frac{1}{2} \begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix} \text{ is unitary matrix.} \qquad \text{CO 4}$$
3.g. Find the singular values of the matrix A = $\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$. (CO5)

SECTION C

4. Answer any one of the following:-
4-a. $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ (i) find A-1 (ii) Show that A³ = A-1. (CO1)

4-b.
$$\begin{bmatrix} 1 & 1 & 1 \\ 3 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 (i) find A-1 (ii) Show that A³ = A-1. (CO1)

5. Answer any one of the following:-
5-a. Define linear dependent and linear independent vectors. Check the given set of vectors (1,1,1),(1,2,3),(1,-2,5) and (2,-1,1) are linearly dependent or independent. Express the vector (1,-2,5) as a linear combination of other vectors.

5-b. Test for consistency and solve the system: (CO2)
$$2x_1+x_2+2x_3+x_4=6$$

$$6x_1-6x_2+6x_3+12x_4=36$$

$$4x_1+3x_2+3x_3-3x_4=-1$$

$$2x_1+2x_2-x_3+x_4=10$$

6. Answer any one of the following:-

- 6-a. Apply Gram- Schmidt process to transform the basis {(1,1,1), (0,1,1), (0,0,1)} into 10 an orthonormal basis.(CO3)
- 6-b. Apply Gram-Schmidt process to transform the standard basis $S=\{1,x,x^2\}$ into an 10 orthonormal basis over [-1,1].(CO3)

7. Answer any one of the following:-

7-a. $A = \begin{bmatrix} -1 & 2+i & 5-3i \\ 2-i & 7 & 5i \\ 5+3i & -5i & 2 \end{bmatrix}$ Show that A is a Hermitian matrix and iA is skew Hermitian matrix. (CO4)

7-b. Show that the mapping $T:V_3(R) \to V_2(R)$ defined as 10 $T(a_1, a_2, a_3) = (3a_1 - 2a_2 + a_3, a_1 - 3a_2 - 2a_3)$ is a linear transformation from $V_3(R)$ into $V_2(R)$. (CO4)

8. Answer any one of the following:-

8-a. Find the singular values of the $A = \begin{bmatrix} 0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ and find the SVD decomposition of A. (CO5)

8-b. Find a singular value decomposition of the matrix $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$. (CO5)

2022-23