Printed Page:- 04	Subject Code:- ACSIOT0302			
	Roll. No:			
NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA				
(An Autonomous Institute Affiliated to AKTU, Lucknow)				
	Гесh			
SEM: III - CARRY OVER THEORY EXAMINATION - AUGUST 2023				
Subject: Logic Desig	n and Microcontroller Max. Marks: 100			
General Instructions:	Wax. Warks. 100			
IMP: Verify that you have received the question p	gaper with the correct course, code, branch etc.			
	ctions -A, B, & C. It consists of Multiple Choice			
Questions (MCQ's) & Subjective type questions.	, , , , , , , , , , , , , , , , , , , ,			
2. Maximum marks for each question are indicat	ed on right -hand side of each question.			
3. Illustrate your answers with neat sketches wherever necessary.				
4. Assume suitable data if necessary.				
5. Preferably, write the answers in sequential ord	er.			
6. No sheet should be left blank. Any write	ten material after a blank sheet will not be			
evaluated/checked.				
SECTION A 20				
1. Attempt all parts:-				
1-a. Product-of-Sums expressions can be	implemented using (CO1) 1			
(a) 2-level OR-AND logic circuit	s			
(b) 2-level NOR logic circuits				
(c) 2-level XOR logic circuits				
(d) Both 2-level OR-AND and N	OR logic circuits			
	oup size in powers of twos) corresponds to 1			
a possible product term of the given	·			
(a) Function				
(b) Value				
(c) Set				
(d) Word				
1-c. D flip-flop is a circuit having	(CO2) 1			
(a) 2 NAND gates				
(b) 3 NAND gates				

	(C) 4 NAND gates	
	(d) 5 NAND gates	
1-d.	What type of register would have a complete binary number shifted in one bit at a time and have all the stored bits shifted out one at a time? (CO2)	1
	(a) Parallel-in Parallel-out	
	(b) Parallel-in Serial-out	
	(c) Serial-in Serial-out	
	(d) Serial-in Parallel-out	
1-e.	SP stands for (CO3)	1
	(a) Stack pointer	
	(b) Segment pointer	
	(c) Status pointer	
	(d) State pointer	
1-f.	What is SIM? (CO3)	1
	(a) Select interrupt mask	
	(b) Sorting interrupt mask	
	(c) Set interrupt mask	
	(d) None of these	
1-g.	Are PUSH and POP instructions are a type of CALL instructions? (CO4)	1
	(a) Yes	
	(b) No	
	(c) None of the mentioned	
	(d) Can't be determined	
1-h.	Which of the ports act as the 16 bit address lines for transferring data through	1
	it? (CO4)	
	(a) PORT 0 and PORT 1	
	(b) PORT 1 and PORT 2	
	(c) PORT 0 and PORT 2	
	(d) PORT 1 and PORT 3	
1-i.	8-bit ADC will have the step size of (CO5)	1
	(a) 19.53 mV	
	(b) 4.88 mV	
	(c) 1.2 mV	

(d) 0.076 mV

	(a) 0.076 mv	
1-j.	Which is true in interfacing 7 segment code display? (CO5)	1
	(a) Transmitted by second port	
	(b) Display is selected by third port	
	(c) Display is selected by second port	
	(d) none of the mentioned	
2. Atten	npt all parts:-	
2.a.	Simplify: $f(A,B,C) = \prod M(1,2,4,6,7)$ using K Map in POS form. (CO1)	2
2.b.	What do you mean by next state? (CO2)	2
2.c.	Which interrupt is not level-sensitive in 8085? (CO3)	2
2.d.	Write registers of 8051. (CO4)	2
2.e.	Calculate the Iout for binary value 11110000 by assuming Iref=2mA. (CO5)	2
	SECTION B	30
3. Answ	er any <u>five</u> of the following:-	
3-a.	Simplify: $f(A,B,C,D) = \sum m(1,2,4,6)$ and implement with logic gates. (CO1)	6
3-b.	$F(A,B,C,D) = \sum m(0,5,7,8,9.10,11,14,15)$ minimize the given using K-MAP in SOP form. (CO1)	6
3-c.	Differentiate between latches & flip flops. (CO2)	6
3-d.	Design MOD 3 UP/DOWN synchronous counter. (CO2)	6
3.e.	List the major features of 8085 microprocessor. (CO3)	6
3.f.	Explain briefly about IE and IP registers. (CO4)	6
3.g.	Explain different modes of Timer for 8051 microcontroller.(CO5)	6
	SECTION C	50
4. Answ	er any <u>one</u> of the following:-	
4-a.	Find expression for 7 segment LED. (CO1)	10
4-b.	$F(A,B,C,D) = \sum m(1,2,3,7,11,15) + \sum d(0,2,5)$ minimize the given using QM method. (CO1)	10
5. Answ	er any <u>one</u> of the following:-	
5-a.	Design a synchronous 3-bit gray code up counter with the help of excitation table. (CO2)	10
5-b.	i) What is clock? Describe different types of clock. (CO2) ii) What is the purpose of clock signal?	10

6. Answer any one of the following:6-a. Explain the direct addressing modes and indirect addressing modes of 8085 10 with example. (CO3) 6-b. Explain the functions of the ALE and IO/M' signals of the 8085 10 microprocessor. (CO3) 7. Answer any one of the following:-

7-a. Mention the advantages of subroutines. Give the range of instructions SJMP, 10 AJMP, LJMP in 8051. (CO4)

7-b. List out the arithmetic operations of 8051 microcontroller with an example and 10 show how the flags are affected for each operation. (CO4)

8. Answer any one of the following:-

8-a. Explain the LCD interfacing with 8051 microcontroller with suitable 10 diagram. (CO5)

8-b. What is sensor? Explain various types of sensors. (CO5)

2022