Printed	Page:- 05	Subject Code:- AEC0303		
		Roll. No:		
NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA				
(An Autonomous Institute Affiliated to AKTU, Lucknow)				
B.Tech				
SEM: III - CARRY OVER THEORY EXAMINATION - AUGUST 2023				
Subject: Signals, Systems and Networks				
	3 Hours	Max. Marks: 100		
	Instructions:	was with the servest source sade branch at		
	•	per with the correct course, code, branch etc.		
	s (MCQ's) & Subjective type questions.	tions -A, B, & C. It consists of Multiple Choice		
	• • • •	d on right -hand side of each auestion		
 Maximum marks for each question are indicated on right -hand side of each question. Illustrate your answers with neat sketches wherever necessary. 				
4. Assume suitable data if necessary.				
5. Preferably, write the answers in sequential order.				
6. No sheet should be left blank. Any written material after a blank sheet will not be				
evaluated/checked.				
	SECTIO	N A 20		
1. Attempt all parts:-				
1-a.	The system characterized by the equa			
	(a) linear for any value of b			
	(b) linear if b > 0			
	(c) linear if b < 0			
	(d) linear if $b = 0$			
1-b.	The average power of an energy signa	al is(CO1) 1		
	(a) 0			
	(b) 1			
	(c) infinite			
	(d) none of these			
1-c.	The length of two discrete time s	equence $x_1(n)$ and $x_2(n)$ are 5 and 7, 1		
. c.	_	ngth of a sequence $x_1(n)$ convolution with		
	(a) 5			

- (b) 6
- (c) 7
- (d) 11
- 1-d. The output signal in an LTI system with known input and known ______.
- 1

- (a) impulse response can always be determined.
- (b) impulse response cannot always be determined.
- (c) impulse response can and cannot be determined.
- (d) None of these
- 1-e. In the circuit of Figure $v(\infty)$ is:

(CO2)

1

- (a) 10 V
- (b) 7 V
- (c) 4 V
- (d) 0 V
- 1-f. Laplace transform if sin(at)u(t) is______?. (CO3)

1

- (a) $s/a^2 + s^2$
- (b) a/a²+s⁴
- (c) $s^2/a^2 + s^2$
- (d) a^2/a^2+s^2
- 1-g. Two-port networks are connected in series. The combination is to be 1 represented as a single two-port network. The parameters of this network are obtained by the addition of the individual: (CO4)
 - (a) Z parameters
 - (b) Y parameters
 - (c) ABCD parameters
 - (d) h parameters
- 1-h. For an ideal step down (10:5) transformer, which one of the following is the A

	parameter? (CO4)	
	(a) 2	
	(b) 0	
	(c) 5n	
	(d) 0.5	
1-i.	The driving point impedance of an LC network is given by $Z(s)=(2s^{-5}+12s^{-3}+16s)/(s^{-4}+4s^{-2}+3)$. By taking the continued fraction expansion using first	1
	Cauer form, find the value of C ₂ . (CO5)	
	(a) 1	
	(b) 1/2	
	(c) 1/3	
	(d) 1/4	
1-j.	Consider the impedance function $Z(s)=(s^2+6s+8)/(s^2+3s)$. Find the value of R ₁ after performing the first Cauer form. (CO5)	1
	(a) 1	
	(b) 2	
	(c) 3	
	(d) 4	
2. Attei	mpt all parts:-	
2.a.	Consider a continuous-time system with input $x(t)$ and output $y(t)$ related by $y(t)$ = $x(\sin(t))$. (CO1) Find whether the system is (i) causal or non-causal (ii) Time Variant or Time Invariant	2
2.b.	Find the Fourier transform of $x(t) = cos(\omega_0 t) u(t)$. (CO2)	2
2.c.	Write the Properties of Laplace Transforms. (CO3)	2
2.d.	Explain the immittance in two port network. (CO4)	2
2.e.	Define Hurwitz polynomial and positive real function (CO5)	2
	SECTION B	30
3. Answ	ver any <u>five</u> of the following:-	
3-a.	Find the even and odd component of $x[n] = u[n] - u[n-6]$ (CO1)	6
3-b.	Explain Energy and Power signal in detail with an example.(CO1)	6
3-c.	State and prove the linear and Shifting property of FT . (CO2)	
3-d.	Determine and sketch the convolution of the following two signals: (CO2)	6

$$x(t) = u(t)$$
 and $h(t) = \delta(t)$

3.e. Determine the inverse Laplace transform of the following function. (CO3)

$$\frac{s^2 + 1}{(s+3)(s^2 + 4s + 5)}$$

3.f. Obtain the ABCD parameters for the T network shown in Fig. (CO4)

3.g. Consider the impedance function $Y(s)=(s^2+4s+3)/(3s^2+18s+24)$. Find the value 6 of C 2 after realizing by second Foster method.(CO5)

SECTION C 50

4. Answer any one of the following:-

4-a. Determine whether the following continuous time systems are causal or non- 10 causal and Linear or Non-Linear. (CO1)

(i)
$$y(t) = x(t) \cos(t+1)$$

(ii)
$$y(t) = x(2t)$$

(iii)
$$y(t) = x(-t)$$

4-b. Define Signals and its Classification with properties. (CO1)

10

10

6

6

5. Answer any <u>one</u> of the following:

5-a. If
$$g(t) = e^{-at} u(t)$$
. Find the Fourier Transform of $g(t)$. (CO2)

5-b. A causal and stable LTI system S has the frequency response 10 $H(\omega) = \frac{4 + j\omega}{6 - \omega^2 + 5i\omega}$ (CO2)

- (a) Determine a differential equation relating the input x(t) and output y(t) of S.
- (b) Determine the impulse response h(t) of S.

6. Answer any <u>one</u> of the following:-

6-a. Define Impulse response.A system is formed by cascading two systems as 10 shown in Figure. Given that the impulse response of the systems are (CO3)

$$h_1(t) = 3e^{-t} u(t),$$

$$h_2(t) = e^{-4t} u(t)$$

- (a) Obtain the impulse response of the overall system.
- (b) Check if the overall system is stable.

6-b. Find the Laplace transform of the following functions. (CO3)

10

- i) $f(t) = \cos^2(3t)$
- ii) $f(t) = t^2 u(t)$
- 7. Answer any one of the following:-
- 7-a. Determine the h parameters for the two-port shown in Fig. (CO4)

10

7-b. For the ladder network in Fig, determine the h parameters in the s domain. 10 (CO4)

- 8. Answer any one of the following:-
- 8-a. Synthesize first and second Foster form of LC network for the impedance (CO5) 10

$$Z(s) = \frac{(s^2 + 1^2)(s^2 + 3^2)}{(s^2)(s^2 + 2^2)}$$

8-b. Realize the network using Cauer's first and second form. (CO5) 10 Z(s)=3(s+2)(s+4)/(s+1)(s+3).