|                   |                                                                       | •                                                    |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|--|
| Printed Page:- 05 |                                                                       | Subject Code:- ACSBS0205                             |  |  |  |  |  |  |  |
|                   |                                                                       | Roll. No:                                            |  |  |  |  |  |  |  |
|                   |                                                                       |                                                      |  |  |  |  |  |  |  |
|                   | NOIDA INSTITUTE OF ENGINEERING                                        | S AND TECHNOLOGY, GREATER NOIDA                      |  |  |  |  |  |  |  |
|                   | (An Autonomous Institute Affiliated to AKTU, Lucknow)                 |                                                      |  |  |  |  |  |  |  |
|                   | в.¬                                                                   | Tech                                                 |  |  |  |  |  |  |  |
|                   | SEM: II - THEORY EXAM                                                 | MINATION (2022-2023 )                                |  |  |  |  |  |  |  |
|                   | Subject: Lir                                                          | near Algebra                                         |  |  |  |  |  |  |  |
| Time: 3           | 3 Hours                                                               | Max. Marks: 100                                      |  |  |  |  |  |  |  |
| General           | Instructions:                                                         |                                                      |  |  |  |  |  |  |  |
| IMP: Ver          | ify that you have received the question p                             | paper with the correct course, code, branch etc.     |  |  |  |  |  |  |  |
| <b>1.</b> This Q  | uestion paper comprises of three Sec                                  | ctions -A, B, & C. It consists of Multiple Choice    |  |  |  |  |  |  |  |
|                   | s (MCQ's) & Subjective type questions.                                |                                                      |  |  |  |  |  |  |  |
|                   | num marks for each question are indicat                               |                                                      |  |  |  |  |  |  |  |
|                   | ate your answers with neat sketches whe                               | rever necessary.                                     |  |  |  |  |  |  |  |
|                   | e suitable data if necessary.                                         |                                                      |  |  |  |  |  |  |  |
| •                 | ably, write the answers in sequential ord                             |                                                      |  |  |  |  |  |  |  |
|                   |                                                                       | ten material after a blank sheet will not be         |  |  |  |  |  |  |  |
| evaluated         | d/checked.                                                            |                                                      |  |  |  |  |  |  |  |
|                   | SECTIO                                                                | ON A 20                                              |  |  |  |  |  |  |  |
| 1. Attem          | npt all parts:-                                                       |                                                      |  |  |  |  |  |  |  |
| 1-a.              | If A be an n-rowed non singular matrix                                | x, $X$ be an nx1 matrix, $B$ be a nx1 null matrix, 1 |  |  |  |  |  |  |  |
|                   | then the system of equation AX=B , has                                | (CO1)                                                |  |  |  |  |  |  |  |
|                   | 0.1                                                                   |                                                      |  |  |  |  |  |  |  |
|                   | (a) unique solution                                                   |                                                      |  |  |  |  |  |  |  |
|                   | (b) infinite solution                                                 |                                                      |  |  |  |  |  |  |  |
|                   | (c) more than two solutions                                           |                                                      |  |  |  |  |  |  |  |
|                   | (d) none of these                                                     |                                                      |  |  |  |  |  |  |  |
| 4 6               | 10 x 161                                                              |                                                      |  |  |  |  |  |  |  |
| 1-b.              | The roots of the equation $\begin{vmatrix} x & 5 & 7 \end{vmatrix} =$ | 1<br>0 are                                           |  |  |  |  |  |  |  |
|                   | 0 9 x                                                                 | (CO1)                                                |  |  |  |  |  |  |  |
|                   |                                                                       | ( · )                                                |  |  |  |  |  |  |  |
|                   | (a) 0, 12 and 12                                                      |                                                      |  |  |  |  |  |  |  |
|                   | (b) 0, 12 and -12                                                     |                                                      |  |  |  |  |  |  |  |
|                   | (c) 0, 12 and 16                                                      |                                                      |  |  |  |  |  |  |  |
|                   | (C) 0, 12 and 10                                                      |                                                      |  |  |  |  |  |  |  |

(d) none of these

| 1-c. | A system of a non homogeneous linear equation AX=B having n unknown and rank of augmented matrix is r, always has a unique solution if (CO2) |   |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|      | (a) $r = n$                                                                                                                                  |   |  |
|      | (b) $r < n$                                                                                                                                  |   |  |
|      | (c) $r > n$                                                                                                                                  |   |  |
|      | (d) none of these                                                                                                                            |   |  |
| 1-d. | If the system of equations $ax + y = 3$ , $x + 2y = 3$ , $3x + 4y = 7$ is consistent, then the value of a is given by (CO2)                  | 1 |  |
|      | (a) 2                                                                                                                                        |   |  |
|      | (b) 1                                                                                                                                        |   |  |
|      | (c) -1                                                                                                                                       |   |  |
|      | (d) none of these                                                                                                                            |   |  |
| 1-e. | Which of the set of vectors are linearly dependent? (CO3)                                                                                    | 1 |  |
|      | (a) (1, 1, -1), 2, -3, 5), (-2, 1, 4)                                                                                                        |   |  |
|      | (b) (1, -1, -1), (2, -3, 5), (-2, 1, 4)                                                                                                      |   |  |
|      | (c) (1, 4, -1), 2, -2, 5), (-2, 1, 4)                                                                                                        |   |  |
|      | (d) None of these                                                                                                                            |   |  |
| 1-f. | A subset W is called subspace of vector space V(F) for a, b $\in$ F and $\alpha$ , $\beta$ $\in$ V, is satisfy -(CO3)                        | 1 |  |
|      | (a) $a\alpha - b\beta \in V$                                                                                                                 |   |  |
|      | (b) $a\alpha \times b\beta \in V$                                                                                                            |   |  |
|      | (b) $a\alpha \times b\beta \in V$<br>(c) $a\alpha \div b\beta \in V$<br>(d) $a\alpha + b\beta \in V$                                         |   |  |
| 1-g. | If A is skew-Hermitian matrix, then iA is (CO4)                                                                                              | 1 |  |
|      | (a) Skew-Hermitian matrix                                                                                                                    |   |  |
|      | (b) Hermitian matrix                                                                                                                         |   |  |
|      | (c) Symmetric matrix                                                                                                                         |   |  |
|      | (d) None of these                                                                                                                            |   |  |
| 1-h. | If $\boldsymbol{\lambda}$ is a characteristic root of the matrix A, then a characteristic root of the                                        | 1 |  |
|      | matrix A+kI is (CO4)                                                                                                                         |   |  |
|      | (a) λ                                                                                                                                        |   |  |
|      | (b) $k + \lambda$                                                                                                                            |   |  |
|      | (c) $k - \lambda$                                                                                                                            |   |  |

## (d) None of these In singular value decomposition method USV<sup>T</sup>, where U is...... (CO5) 1-i. 1 (a) Orthogonal (b) Diagonal (c) Transpose of orthogonal matrix (d) None of these PCA technique is used for...... (CO5) 1-j. 1 (a) Dimensionalty reduction (b) Pattern recognition (c) Orthogonalty reduction (d) None of these 2. Attempt all parts:-If $\begin{bmatrix} x+y & 2x+z \\ x-y & 2z+w \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 0 & 10 \end{bmatrix}$ , then find the value of x,y, z and w. (CO1) 2 2.a. Find the rank of the matrix $A = \begin{bmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \end{bmatrix}$ . (CO2) 2.b. 2 Determine if the vectors $\{(1,-2,1), (2,1-1), (7,-4,1)\}$ in $\mathbb{R}^3$ are Linearly independent (COS)2 2.c. independent. (CO3) $A = \begin{bmatrix} 2 & 3-4i \\ 3+4i & 2 \end{bmatrix}$ is a Hermitian matrix. (CO4) 2.d. 2 Define principal component analysis method. (CO5) 2.e. 2 **SECTION B** 30 3. Answer any five of the following If $A = \begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 3 \end{bmatrix}$ . Find the product AB and BA. (CO1) 3-a. 6 If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ then prove that $A^n = \begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix}$ . (CO1) 3-b. 6 Find the rank of a matrix reducing to normal form $\begin{bmatrix} 1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \end{bmatrix}$ . (CO2) 6 3-c. Test the consistency of system of equation 10y+3z=0,3x+3y+z=0,2x-3y-3-d. 6 z=5,x+2y=4. (CO2)

 $T: V_2(R) \to V_3(R)$  defined as T(a, b) = (a+b, a-b, b) is

6

6

Show that the vectors (2,1,4), (1,-1,2) and (3,1,-2) forms a basis of R<sup>3</sup>.(CO3)

3.e.

3.f.

Show that the mapping

a linear transformation from  $V_2(R)$  into  $V_3(R)$ . (CO4) Calculate the covariance using PCA of the given data (CO5) 6 3.g. 3.1 2.2 1.9 2.3 y: 2.4 0.7 2.9 2.2 3.0 2.7 1.1 0.6 1.9 SECTION C 50 4. Answer any one of the following:-Compute Adj A and verify that A(Adj A)=(Adj A) A= A I, Given the matrix 4-a. 10 If  $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ , then prove that  $A^n = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ ,  $n \in \mathbb{N}$  (CO1) 4-b. 10 5. Answer any one of the following:-Determine the value of  $\lambda$  and  $\mu$  so that the equations x+y+z=6, x+2y+3z=10, 5-a. 10  $x+2y+\lambda z=\mu$  have (i) no solution, (ii) a unique solution and (iii) infinite many solutions. 5-b. Solve the following system of equation by LU decomposition method: (CO2) 10 2x+3y-z=5,3x+2y+z=10,x-5y+3z=06. Answer any one of the following:-Show that the transformation T:  $V_2(R) \rightarrow V_3(R)$  defined as 6-a. 10 T(a, b)=(a+b, a-b, b)  $\forall$  a,b  $\in$  R is linear. Find its null space, nullity, range and rank.(CO3) Apply Gram-schmidt process to the vectors  $\alpha_1 = (1,0,1)$ ,  $\alpha_2 = (1,0,-1)$ ,  $\alpha_3 = (0,3,4)$  to 6-b. 10 obtain the orthonormal basis for V <sub>3</sub>(R).(CO3) 7. Answer any one of the following:-If  $\lambda_1, \lambda_2, \dots, \lambda_n$  are the eigenvalues of a matrix A, prove the following: 7-a. 10 (a) A <sup>T</sup> has eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_n$ . (b) If A is upper triangular, then its eigenvalues are exactly the main diagonal entries. (CO 4) 7-b.  $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ Show that A is skew- Hermitian and Unitary both, where (CO 4)8. Answer any one of the following:-

| 8-a. | Find the singular values of the $A = \begin{bmatrix} 0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ and find the SVD decomposition of A. (CO5) | 10 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8-b. | Given the following data, use PCA to reduce the dimension from 2 to 1.(CO5)  Feature Example 1 Example 2 Example 3 Example 4                              | 10 |

| Feature | Example 1 | Example 2 | Example 3 | Example 4 |
|---------|-----------|-----------|-----------|-----------|
| x:      | 4         | 8         | 13        | 7         |
| y:      | 11        | 4         | 5         | 14        |

