Printed Page:-03	Subject Code:- AMTCSE0201			
	Roll. No:			
NOIDA INSTITU	TE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA			
(An Autonomous Institute Affiliated to AKTU, Lucknow)				
M.Tech				
SE	M: II - THEORY EXAMINATION (2022-2023)			
	Subject: High Performance Computing			
Time: 3 Hours	Max. Marks: 70			
General Instructions:				
•	eceived the question paper with the correct course, code, branch etc.			
Questions (MCQ's) & Subjections	mprises of three Sections -A, B, & C. It consists of Multiple Choice tive type questions.			
-	h question are indicated on right -hand side of each question.			
•	vith neat sketches wherever necessary.			
4. Assume suitable data if i	necessary.			
5. Preferably, write the ans	wers in sequential order.			
6. No sheet should be	eft blank. Any written material after a blank sheet will not be			
evaluated/checked.				
	SECTION A 15			
1. Attempt all parts:-				
1-a. VLIW processor	s rely on CO1			
(a) 1.Com	pile time analysis			
(b) 2.Initia	l time analysis			
(c) 3.Final	time analysis			
(d) 4.id tir	ne analysis			
1-b. The $n \times n$ mat	rix is partitioned among n processors, with each processor 1			
	e of the matrix. CO2			
(a) 1. Row				
(b) 2. colu	mn			
(c) 3. both				
(d) 4.depe	end on processor			
·	and reduction on a balanced binary tree reduction is done in 1			
CO3				
	rsive order			

	(b) 2. straight order	
	(c) 3. vertical order	
	(d) 4.parallel order	
1-d.	which problems can be handled by recursive decomposition CO4	1
	(a) 1. backtracking	
	(b) 2. greedy method	
	(c) 3. divide and conquer problem	
	(d) 4.branch and bound	
1-e.	The style of parallelism supported on GPUs is best described as CO5	1
	(a) 1. MISD – Multiple Instruction Single Data	
	(b) 2. SIMT – Single Instruction Multiple Thread	
	(c) 3. SISD – Single Instruction Single Data	
	(d) 4.MIMD	
2. Atten	npt all parts:-	
2.a.	Elaborate Computing performance? CO1	2
2.b.	Define the symmetric multi processor? CO2	2
2.c.	Explain Control structure of parallel platform in details? CO3	2
2.d.	Define latency and bandwidth of memory? CO4	
2.e.	How to identify the bottle networks CO5	2
	SECTION B	20
3. Answ	er any <u>five</u> of the following:-	
3-a.	What is complexity? CO1	4
3-b.	What are the limitations of memory system performance? CO1	4
3-c.	Define the co-operative threads? CO2	4
3-d.	Write and Explain the cache-coherence protocols names? CO2	4
3.e.	What are different partitioning techniques used in Matrix-Vector Multiplication CO3	
3.f.	Describe Uniform Memory access and Non uniform memory access? CO4	4
3.g.	Define Memory? Explain restructuring of the memory hierarchy. CO5	4
	SECTION C	35
4. Answ	er any <u>one</u> of the following:-	
4-a.	What are the classifications of interconnection networks? CO1	7

4-b.	Give the Characteristics of tasks in details? CO1	7
5. Answ	ver any <u>one</u> of the following:-	
5-a.	Give the two names architectural classifications of fetching. Elaborate? CO2	7
5-b.	Define the RoadRunner computer. Explain? CO2	7
6. Answ	ver any <u>one</u> of the following:-	
6-a.	Explain instruction prefetch. CO3	7
6-b.	Discuss in detail about the various design issues of pipeline processors. CO3	7
7. Answ	ver any <u>one</u> of the following:-	
7-a.	Explain multi-core processors. Discuss different types of multi-core processors? CO4	7
7-b.	What are the Synchronization methods? Explain. CO4	7
8. Answ	ver any <u>one</u> of the following:-	
8-a.	Explain memory hierarchy. Also how will you apply this memory hierarchy to transaction specific memory design? CO5	7
8-b.	Write down principles of message passing programming. CO5	7