Printed Page:-03	Subject Code:- AMTVL0202				
	Roll. No:				
NOIDA INSTITUTE OF ENGINEERIN	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA				
(An Autonomous Institute Affiliated to AKTU, Lucknow)					
M.Tech					
SEM: II - THEORY EXAMINATION (2022-2023)					
Subject: Low Power VLSI Design					
Time: 3 Hours	Max. Marks: 70				
General Instructions:					
	paper with the correct course, code, branch etc.				
	ections -A, B, & C. It consists of Multiple Choice				
Questions (MCQ's) & Subjective type questions.					
2. Maximum marks for each question are indicated on right -hand side of each question.					
3. Illustrate your answers with neat sketches wh	erever necessary.				
4. Assume suitable data if necessary.					
5. Preferably, write the answers in sequential or					
evaluated/checked.	itten material after a blank sheet will not be				
SECT	ION A 15				
1. Attempt all parts:-					
1-a. Under an input ramp signal, a firs	st order analysis of the short-circuit current 1				
reveals that the energy dissipated is	s (CO1)				
(a) Eshort = $\beta/12 \times \tau$ (Vtp –Vtn))3				
(b) Eshort = $\beta \times \tau$ (Vtp –Vtn)3					
(c) Eshort =β/12 (Vtp –Vtn)					
(d) None of these					
1-b. How many NMOS and PMOS are re	quired for 2-input CMOS NAND gate? (CO2)				
(a) 4					
(b) 2					
(c) 8					
(d) None of these					
1-c. The J-K flip flops has men	mory. (CO3) 1				
(a) Temporary					
(b) Random					
· <i>·</i>					

5. Answ	er any <u>one</u> of the following:-	
4-b.	What is activity factor ?Explain in details. (CO1)	7
4-a.	How is CMOS logic implemented? Explain in details. (CO1)	7
4. Answ	er any <u>one</u> of the following:-	
-	SECTION C	35
3.g.	Differentiate between zero skew and tolerable skew. (CO5)	4
3.f.	What do you understand by flow graph transformation? (CO4)	4
3.e.	Explain the Standard cell design and cell libraries? (CO3)	4
3-d.	What is the first step in a Monte Carlo analysis? (CO2)	4
3-c.	Write short notes on probabilistic power analysis techniques. (CO2)	4
3-b.	Write short notes on impact of technology scaling. (CO1)	
3-a.	Draw the CMOS schematic for the function: Y=(ab+bc+de)'. (CO1)	4
3. Answ	er any <u>five</u> of the following:-	_•
	SECTION B	20
2.e.	How the propogation delay get affected by increasing fanout? (CO5)	2
2.d.	Why is SRAM called static? (CO4)	2
2.c.	What is finite state machine? (CO3)	2
2.b.	How do you find the capacitive power? (CO2)	2
2.a.	What is W/ L ratio? (CO1)	2
2. Atten	npt all parts:-	
	(d) Idd	
	(b) Maximum (c) Id(on)	
	(a) Zero	
1-e.	Consider an ideal MOSFET. If Vgs = 0V, then Id = ? (CO5)	1
	(d) Memory accessible register	
	(c) Main accessible register	
	(b) Main address register	
	(a) Memory address register	
1-d.	MAR stands for (CO4)	1
	(d) True	
	(c) Non random	

5-a.	What is probabilistic simulation? Explain in detail. (CO2)	7
5-b.	Why leakage power dissipation has become an important issue in deep submicron technology? (CO2)	7
6. Answ	er any <u>one</u> of the following:-	
6-a.	With the help of block diagram explain architecture of bus invert encoding in details. (CO3)	7
6-b.	Draw the state flow or transition diagram for a JK flip-flop and also give the truth table associated with it. (CO3)	7
7. Answ	er any <u>one</u> of the following:-	
7-a.	What is operator reduction? Explain in details. (CO4)	7
7-b.	What is the difference between power consumption and power dissipation? (CO4)	7
8. Answ	er any <u>one</u> of the following:-	
8-a.	Explain power dissipation in clock distribution in detail. (CO5)	7
8-b.	Explain Algorithmic Level analysis and optimization in detail. (CO5)	7
	2022-23	