Printed i	a Page:- 03 Subject	Code:- AMIVLU215		
	Roll. No			
I	NOIDA INSTITUTE OF ENGINEERING AND TEC			
	(An Autonomous Institute Affiliated	to AKTU, Lucknow)		
M.Tech				
	SEM: II - THEORY EXAMINATION			
Time: 2	Subject: Nanoscale Devices: Model : 3 Hours	ing & Simulation Max. Marks: 70		
	al Instructions:	Wax. Warks. 70		
	erify that you have received the question paper with a	the correct course, code, branch etc.		
	Question paper comprises of three Sections -A,			
	ns (MCQ's) & Subjective type questions.	,		
2. Maxim	mum marks for each question are indicated on right	-hand side of each question.		
3. Illustra	rate your answers with neat sketches wherever neces	ssary.		
4. Assume	ne suitable data if necessary.			
•	rably, write the answers in sequential order.			
	sheet should be left blank. Any written mater	ial after a blank sheet will not be		
evaluatea	ed/checked.			
	SECTION A	15		
1. Attem	mpt all parts:-	,		
1-a.	If the depletion-layer widths (xdS, xdD) of the s	source and drain junction and L is 1		
	Channel length then In DIBL case (CO1)			
	(a) $xdS + xdD = L$			
	(b) $xdS + xdD > L$			
	(c) $xdS + xdD < L$			
	(d) xdS - xdD < L			
1-b.	In MOS lateral Electric field generated due to	(CO2) 1		
	(a) Gate voltage			
	(b) drain to sourese voltage			
	(c) barrier potential			
	(d) None of these			
1-c.	In Twin Silicon Nanowire FET, gate stack is of n	umber (CO3) 1		
	(a) 1			
	(b) 2			

	(c) 3		
	(d) 4		
1-d.	Stray capacitance is also named as (CO4)	1	
	(a) fixed capacitance		
	(b) parasitic capacitance		
	(c) electrolyte capacitance		
	(d) variable capacitance		
1-e.	A transconductance amplifier is also called (CO5)	1	
	(a) current to voltage convertor		
	(b) voltage to current convertor		
	(c) resistor		
	(d) inductor		
2. Atte	empt all parts:-		
2.a.	Discuss the problem associated with high-K materials. (CO1)	2	
2.b.	Enlist the significance of Semiconductor thickness effect. (CO2)	2	
2.c.	Why nanowires are important in devices? (CO3)	2	
2.d.	How does SOI technology improve the performance of a circuit? (CO4)	2	
2.e.	Define CMRR? and enlist its significance. (CO5)	2	
	SECTION B	20	
3. Ans	wer any <u>five</u> of the following:-		
3-a.	What are the differences between FDSOI and PDSOI? (CO1)		
3-b.	Write a short note on quantum effect and volume inversion. (CO1)		
3-c.	Write the Modeling assumptions for double gate MOS system. (CO2)		
3-d.	How one-dimensional electron gas formed? (CO2)		
3.e.	What are the characteristics of Si nanowires? (CO3)		
3.f.	Drive the expression for Drain current of CMOS with suitable diagram. (CO4)	4	
3.g.	Explain in brief the principle of operation of successive Approximation ADC. (CO5)	4	
	SECTION C	35	
4. Ans	wer any <u>one</u> of the following:-		
4-a.	What do you mean by drain punch through condition? Explain it with suitable diagram.(CO1)		

4-b.	What is the significance of interconnects in MOS devices and also enlist its types.(CO1)	7		
5. Answer any <u>one</u> of the following:-				
5-a.	What is corner effect? Write the condition when it vanished out. (CO2)	7		
5-b.	How FinFET differ from MIGFET? Enlist the advantage and disadvantage of FinFET. (CO2)	7		
6. Answer any <u>one</u> of the following:-				
б-а.	Explain the applications of nanowires in biomedical and electronic devices. (CO3)	7		
6-b.	What is Schottky barrier? Discuss the carbon nano tube FETs and draw the output characteristics. (CO3)	7		
7. Answer any <u>one</u> of the following:-				
7-a.	Explain transient effects in SOI devices. (CO4)	7		
7-b.	How total ionizing dose effects work in Dual-gate SOI? Explain in detail with suitable diagram? (CO4)	7		
8. Answer any <u>one</u> of the following:-				
8-a.	What is the importance of Slew Rate for operational Amplifier? Enlist other parameter for operational Amplifier and its practical significance. (CO5)	7		
8-b.	Discuss the operation of VCO and LNA and also write the designing step for LNA.(CO5)	7		