Printed	Page:- 05	Subject Code:- BCSBS0205 Roll. No:			
	NOIDA INSTITUTE OF ENGINEE	RING AND TECHNOLOGY, GREATER NOIDA			
	(An Autonomous Insti	tute Affiliated to AKTU, Lucknow)			
		B.Tech			
		EXAMINATION (2023 - 2024)			
Time [.]	3 Hours	ct: Linear Algebra Max. Marks: 100			
	l Instructions:	Wax. Warks. 100			
		tion paper with the correct course, code, branch etc.			
		ee Sections -A, B, & C. It consists of Multiple Choice			
Question	ns (MCQ's) & Subjective type questio	ns.			
2. Maxin	mum marks for each question are in	ndicated on right -hand side of each question.			
3. Illustr	ate your answers with neat sketche	s wherever necessary.			
	ne suitable data if necessary.				
•	rably, write the answers in sequenti				
	neet should be left blank. Any ed/checked.	written material after a blank sheet will not be			
	S	ECTION A 20			
1. Atten	npt all parts:-				
1-a.	If A is any square matrix, then which of	the following is skew – symmetric? (CO1) 1			
	(a)				
	$A + A^T$				
	(b) $A - A^T$				
	(c) AA^T				
	(d) none of these				
1 L	` '	1			
1-b.	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $A^2 + 2A$ equals	(CO1)			
	[001]				
	(a) 4 <i>A</i>				
	(b) 3A				
	(c) 2 <i>A</i>				
	(d) none of these				
1-c.	The given system of vectors $X_1 = (3, 1)$	$(CO2)$, $X_2 = (2, 2, -3), X_3 = (0, -4, 1)$ are $(CO2)$			

1

	(c) consisitent				
	(d) none of these				
1-d.	A system of a non homogeneous linear equation AX=B having n unknown and rank of augmented matrix is r, always has a unique solution if (CO2)				
	(a) $r = n$				
	(b) $r < n$				
	(c) $r > n$				
	(d) none of these				
1-e.	Let T be a function from F^3 into F^3 then range of linear transformation T(a, b, c) = (a-b+2c, 2a+b, -a-2b+2c) is (CO3)				
	(a) (1, 1, 0), (1, 2, 3), (1, 2, -1)				
	(b) (1, 1, 1), (1, 2, 3), (1, -2, -1)				
	(c) (1, -1, 0), (1, 2, -3), (1, 2, -1)				
	(d) None of these				
1-f.	Two vectors α and β are orthogonal if and only if (CO3)				
	(a) $\ \alpha + \beta\ ^2 = \ \alpha\ ^2 - \ \beta\ ^2$				
	(b) $ \alpha + \beta ^2 = 2 \alpha ^2 + 2 \beta ^2$				
	(c) $ \alpha + \beta ^2 = \alpha ^2 + \beta ^2$				
	(d) $\ \alpha + \beta\ ^2 = 2\ \alpha\ ^2 + \ \beta\ ^2$				
1-g.	If the eigen value of A is 2, then the eigen values of $A^3 + 2A^2 + A + I$ are (CO 4)	1			
	(a) 22				
	(b) 21				
	(c) 19				
	(d) None of these				
1-h.	If T_1 and T_2 be a linear transformation then which is correct? (CO 4)	1			
	(a) $(T_1 + T_2)(\alpha) = T_1(\alpha) - T_2(\alpha)$				
	(b) $(T_1 + T_2)(\alpha) = T_1(\alpha) + T_2(\alpha)$				
	(c) $(T_1 + T_2)(\alpha) = T_1(\alpha) \cdot T_2(\alpha)$				
	(d) None of these				
1-i.	PCA technique is used for (CO5)	1			
	(a) Dimensionalty reduction				

(a) Linearly dependent

(b) Linearly independent

(b) Pattern recognition (c) Orthogonalty reduction (d) None of these In singular value decomposition method USV^T, where U is....... (CO5) 1 (a) Orthogonal (b) Diagonal (c) Transpose of orthogonal matrix (d) None of these 2. Attempt all parts:-If $A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$, then find AB and BA. (CO1) 2 If X = (1, 0, 0), Y = (0, 1, 0) and Z = (0, 0, 1), find 2X + 3Y - Z. (CO2) 2 If F is the field of real numbers, prove that the vectors (a_1, a_2) and (b_1, b_2) in $V_2(F)$ are 2 linearly dependent iff $a_1b_2 - a_2b_1 = 0$. (CO3) 2 Find the product of eigen values of the matrix Define principal component analysis method. (CO5) 2 SECTION B 30 6 (CO1) 6 x + 4y + 3z = 2, 2x - 6y + 6z = -3 and 5x - 2y + 3z = -5. 6

3. Answer any five of the following:-

1-j.

2.a.

2.b.

2.c.

2.d.

2.e.

3-a. If
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$, verify that $(AB)' = B'A'$. (CO1)

3-b. Solve the following equations by Cramer's rule (CO1)
$$x + 4y + 3z = 2 \cdot 2x - 6y + 6z = -3 \text{ and } 5x - 2y + 3z = -5.$$

Test the consistency of system of equation 10y+3z=0, 3x+3y+z=0, 2x-3y-z=5, 3-c. x+2y=4. (CO2)

Show that the vectors $X_1 = (1, 2, 4), X_2 = (2, -1, 3), X_3 = (0, 1, 2)$ and $X_4 = (-3, 7, 2)$ 3-d. 6 are linearly dependent and find the relation between them. (CO 2)

If u and v are vectors in a real inner product space. If II u II= II v II then u-v and 3.e. 6 u+v are orthogonal. (CO-3)

3.f.
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}. \tag{CO 4}$$
 Find the eigen values of $3A^3 + 5A^2 - 6A + 2I$ where

Given the following data, Using PCA find the covariance.(CO5) 3.g. 6 13 7 x: 5 y: 11 4 14 **SECTION C** 50 4. Answer any <u>one</u> of the following:-Express A = $\begin{bmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix}$ in to form of LU, where L is the lower traingular and 4-a. 10 (CO1) Find the inverse of the matrix A by applying elementary transformations. (CO1) 4-b. 10 $A = \begin{bmatrix} 1 & 3 & 2 & -3 \\ -1 & 2 & 1 & -1 \end{bmatrix}.$ 5. Answer any one of the following:-Reduce the matrix A to its normal form and hence find its rank where, 5-a. 10 $A = \begin{vmatrix} 4 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \end{vmatrix}$ Find the values of λ such that the following equations have unique solution $\lambda x + 2y - 2z - 1 = 0$, 5-b. $4x + 2\lambda y - z - 2 = 0$, $6x + 6y + \lambda z - 3 = 0$ and use matrix method to solve these equation when $\lambda = 2$. 6. Answer any one of the following:-Apply Gram- Schmidt process to transform the basis {(1,1,1), (0,1,1), (0,0,1)} into 6-a. 10 an orthonormal basis.(CO3) If W₁ and W₂ are subspaces of the vector space R⁴(R) generated by 6-b. 10 $S_1 = \{(1,1,0,-1), (1,2,3,0), (2,3,3,-1)\}, S_2 = \{(1,2,2,-2), (2,3,2,-3), (1,3,4,-3)\}$ respectively, Determine-(CO3) (a) $\dim(W_1 + W_2)$ (b) $dim(W_1 \cap W_2)$ 7. Answer any one of the following:-7-a. 10

7-a.
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \end{bmatrix}. \quad (CO4)$$

Show that the mapping $T:V_3(R) \to V_2(R)$ defined as T(a,b,c) = (a,b) is a linear 7-b. 10 transformation. (CO4)

8. Answer any one of the following:-

8-a.	Given the following data, use PCA to reduce the dimension from 2 to 1.(CO5)					10
	Feature	Example 1	Example 2	Example 3	Example 4	
	x:	4	8	13	7	
	y:	11	4	5	14	
8-b.	Find a singular value decomposition of the matrix $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$. (CO5)			$= \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} . (CO5)$	10	

REG. MAY