Printed Page:- 03		ge:- 03	Subject Code:- BCSBS0101										
		_	oll. No:										_
NO	IDA I	INSTITUTE OF ENGINEERING AN					-		ATE	RN	OI	DA	
		(An Autonomous Institute Affili B.Tech		Ak	KTU	, Luc	ckno	ow)					
		SEM: I - THEORY EXAMIN	=	N C	2024	l- 202	25)						
		Subject: Physics for Co					-0)						
Tim	e: 2 F	Hours	•						Ma	x. N	Iarl	ks: 50)
		structions:								-			
		y that you have received the question pap											
		stion paper comprises of three Sections - MCQ's) & Subjective type questions.	A, D, 0	ĸ C.	II C	Orisis	is Oj	11111	шрі	e Ci	noic	е	
		n marks for each question are indicated o	n right	-ha	ınd s	ide o	f ea	ch q	juest	ion.			
		your answers with neat sketches wherev	er nece	ssai	ry.								
		suitable data if necessary.											
		ly, write the answers in sequential order. should be left blank. Any written materia	l after i	a bl	ank	shoot	wil	l no	t he				
		hecked.	i ajier (u vi	urik i	sneei	Will	i no	i De				
SECT	TON-	<u>-A</u>										15	5
1. Attempt all parts:-		all parts:-											
1-a.	_	particle in simple harmonic motion while	e passi	ng t	hrou	gh m	ean	pos	itior	ı wi	11]	1
		ave (CO1, K1)				9		•					
	(a)	maximum kinetic energy and maximun	n poten	tial	ener	gy							
	(b)	maximum kinetic energy and minimum	potent	tial (ener	gy							
	(c)	minimum kinetic energy and maximum	potent	tial e	ener	gy							
	(d)	minimum kinetic energy and minimum	potent	ial e	energ	gy							
1-b.	T	he ray which obeys Snell's law of refract	ion is k	cnov	vn a	s (CC)2, I	X 1)				1	1
	(a)	ordinary ray											
	(b)	extraordinary ray											
	(c)	simple ray											
	(d)	electric ray											
1-c.	E	quation of Continuity shows conservation	n of (C	CO3	, K1)]	1
	(a)	force											
	(b)	energy											
	(c)	charge											
	(d)	momentum											
1-d.	W	When the system is in equilibrium with the	e surrou	ındi	ngs,	it m	ıst b	e in	(CC)4,]	K1)	1	1
	(a)	pressure equilibrium											
	(b)	temperature equilibrium											

	(c)	chemical equilibrium	
	(d)	All of the Above	
1-e.	W	Thich of the following is the property of lasers? (CO5, K1)	1
	(a)	Highly directional	
	(b)	Monochromatic	
	(c)	Coherent	
	(d)	All the above	
2. Atte	empt a	ıll parts:-	
2.a.	De	efine resonance in forced harmonic oscillations? (CO1, K1)	2
2.b.	W	That is double refraction? Explain. (CO2, K1)	2
2.c.	W	That is displacement current? (CO3, K1)	2
2.d.	W	That do you mean by entropy? (CO4, K1)	2
2.e.	W	That is pumping? (CO5, K1)	2
SECT	ION-	<u>B</u>	15
3. Ans	wer a	ny three of the following:-	
3-a.	se	9 kg mass attached to a spring is observed to oscillate with a period of 3 conds. What is the period of oscillation if a 15 kg mass is attached to the spring? (201, K3)	5
3-b.	of	ght of wavelength 500 nm forms an interference pattern on a screen at a distance 2 m from the slit. If the distance between the consecutive bright or dark fringes 0.05 cm, find the distance between the slits. (CO2, K3)	5
3.c.		ne relative permittivity of distilled water is 81. Calculate refractive index and elocity of light in it. (CO3, K3)	5
3.d.		That is the maximum possible cycle efficiency of a heat engine operating etween a heat source at 600 °C and a heat sink at 60 °C? (CO4, K3)	5
3.e.		a CO ₂ laser, the energy difference between two levels is 0.100 eV. Calculate e frequency of radiation (CO ₅ , K ₃)	5
SECT 4. Ans		C ny one of the following:-	20
4-a.		That is damped simple harmonic motion? Derive differential equation for it. CO1, K2)	4
4-b.		efine simple harmonic motion (SHM). Also explain the terms time period, inplitude and phase of a wave. (CO1, K1)	4
5. Ans	wer a	ny <u>one</u> of the following:-	
5-a.		ive the construction and theory of plane transmission grating and explain the rmation of spectra by it. (CO2, K2)	4
5-b.	De	erive an expression for n th dark Newton's ring in reflected light. (CO2, K2)	4
6 Ans	wer a	ny one of the following:	

6-a.	Derive Maxwell's 3 rd equation. (CO3, K2)	4
6-b.	What is the band theory of solids? (CO3, K1)	4
7. Answe	er any one of the following:-	
7-a.	Explain zeroth law and second law of thermodynamics. (CO4, K1)	4
7-b.	Derive an expression for the efficiency of Carnot heat engine. (CO4, K2)	4
8. Answe	er any one of the following:-	
8-a.	Discuss the construction and working of neodymium laser. (CO5, K2)	4
8-b.	Discuss Step-index multimode and Graded Index (GRIN) multimode fiber. (CO5, K2)	4

