Pri	nted page: 4	Subject Code: ACSIOT0501	
	Roll No:		
NOIDA	A INSTITUTE OF ENGINEERING AND TECHN	IOLOGY, GREATER NOIDA	
	(An Autonomous Institute Affiliated to Al	KTU, Lucknow)	
	B.Tech		
	SEM: V - THEORY EXAMINATIO	N (2024-2025)	
	Subject ARM Architecture f	or IOT	
Tir	ne: 3 Hours		
Ma	ax. Marks:100		
Ger	neral Instructions:		
IMI	P: Verify that you have received question paper with correct cou	urse, code, branch etc.	
2. 1 3. 1 4. 4 5. 1	This Question paper comprises of three Sections -A, B, & C. It constants & Subjective type questions. Maximum marks for each question are indicated on right hand side that the sour answers with neat sketches wherever necessary. Assume suitable data if necessary. Preferably, write the answers in sequential order. No sheet should be left blank. Any written material after a blank should be left blank.	of each question.	
	SECTION – A	20	
1. At	tempt all parts:-		
1-a.	How is the protection and security for an e	mbedded system made? 1	
	(CO1, K2)		
	(a) Security chips (b) Mamary disk security		
	(b) Memory disk security(c) IPR		
	(d) OTP		
1-b.	Which is the first company that defined RI	SC architecture?	
	(CO1, K1)		
	(a) Intel		
	(b) IBM		
	(c) Motorola		
	(d) MIPS		
1-c.	How many operating modes does ARM ha (a) Four	ve? (CO2, K1) 1	

	(b) Seven	
	(c) Sixteen	
	(d) Thirty Seven	
1-d.	When the processor is executing in ARM state, then all instructions	1
	arewide. (CO2, K1)	
	(a) 8-bits	
	(b) 16-bits	
	(c) 32-bits	
	(d) All of the above	
1-e.	Which module in CMSIS provides drivers for Cortex-M processor	1
	peripherals? (CO3, K1)	
	(a) CMSIS-DSP	
	(b) CMSIS-Core	
	(c) CMSIS-RTOS	
	(d) CMSIS-SVD	
1-f.	Which ARM peripheral uses timers to control the PWM signal?	1
	(CO3, K1)	
	(a) TPM	
	(b) ADC	
	(c) DAC	
	(d) I2C	
1-g.	What happens in the KL25Z when the processor enters low-power	1
	modes like STOP or DOZE? (CO4, K2)	
	(a) System clock is disabled	
	(b) GPIO remains active	
	(c) Timers continue running	
	(d) Peripheral clocks are paused	
1-h.	What type of clock is supported by the Low-Power Timer (LPTMR)	1
	in KL25Z? (CO4, K2)	
	(a) External clock only	
	(b) Internal and external clock	
	(c) Timer-generated clock	
	(d) PLL clock	
1-i.	Which of the following is not a component of UART data	1
	transmission? (CO5, K1)	

	(a) Start bit	
	(b) Data frame	
	(c) CRC field	
	(d) Stop bit	
1-j.	What type of communication is used by the MMA8451	1
	accelerometer to transmit data? (CO5, K1)	
	(a) UART	
	(b) SPI	
	(c) I2C	
	(d) RS-232	
2. At	tempt all parts:-	
2.a.	What do you mean by AMBA? Name Sub-protocols of AMBA.	2
	(CO1, K2)	
2.b.	What is a program image? (CO2, K2)	2
2.c.	What is the function of the Keil μ Vision IDE? (CO3, K2)	2
2.d.	Describe the term "OpenSDA." (CO4, K2)	2
2.e.	List two primary uses of UART in ARM-based IoT systems. (CO5,	2
	K1)	
	SECTION – B	30
3. Ar	nswer any <u>five</u> of the following-	
3-a.	Explain RISC and CISC. Also, give differences between them.	6
	(CO1, K4)	
3-b.	Define Real-Time Operating System (RTOS) and explain its	6
	importance in embedded applications. (CO1, K4)	
3-c.	Write about ARM Registers available in user mode. (CO2, K1)	6
3-d.	Explain how ARM processors handle interrupt management	6
	through NVIC.(CO2, K2)	
3-е.	Explain the architecture of CMSIS Core.(CO3)	6
3-f.	Explain the significance of PORT control registers in KL25Z.	6
	(CO4, K2)	
3-g.	What are the differences between synchronous and asynchronous	6
	communication? (CO5, K4)	
	SECTION – C	50
4. Ar	nswer any one of the following-	

4-a.	Why do we use an operating system? Can we design Embedded	10
	systems without OS? Justify your answer with appropriate	
	Example. (CO1, K3)	
4-b.	What is Concurrency? Elaborate with example. (CO1, K2)	10
5. Ar	nswer any <u>one</u> of the following-	
5-a.	Write short notes on the following with respect of ARM processor:	10
	(i) Instructions (ii) Load-store architecture (iii) Pipelining.(CO2,	
	K2)	
5-b.	Write an assembly language program with a proper explanation to	10
	add four numbers at the memory location starting from 0x2500,	
	using register indirect addressing modes(CO2, K6)	
6. Ar	nswer any one of the following-	
6-a.	Describe an embedded C example for interfacing a water flow	10
o u.	sensor.CO3, K2)	10
6-b.		10
0 0.	embedded systems. (CO3, K2)	
7. Ar	nswer any one of the following-	
7-a.	Write an embedded C program to control an RGB LED using PWM	10
, a.	on KL25Z.(CO4, K6)	10
7 h		10
7-b.	Write a program to generate PWM using TPM in KL25Z. (CO4,	10
0 4	K6)	
8. Ar	nswer any <u>one</u> of the following-	
8-a.	Explain the significance of programmable interrupt settings in KL-	10
	25Z. (CO5, K2)	
8-b.	Explain the process of data parsing in UART.(CO5, K2)	10