Printed	ted Page:-04 Subject Code:- AEC0401 Roll. No:	
NOII	DIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GRE (An Autonomous Institute Affiliated to AKTU, Lucknow) B.Tech SEM: IV - THEORY EXAMINATION (2024 - 2025)	
Times	Subject: Analog and Digital Communication	Mary Markey 100
	ne: 3 Hours eral Instructions:	Max. Marks: 100
	Verify that you have received the question paper with the correct course,	code, branch etc.
	is Question paper comprises of three Sections -A, B, & C. It consists of M	
_	tions (MCQ's) & Subjective type questions.	
	eximum marks for each question are indicated on right -hand side of each of strate your answers with neat sketches wherever necessary.	question.
	sume suitable data if necessary.	
	eferably, write the answers in sequential order.	
	sheet should be left blank. Any written material after a blank sheet will no ated/checked.	ot be
	FION-A	20
1. Attem	tempt all parts:-	
1-a.	The function of multiplexing is (CO1, K1)	1
((a) to reduce the bandwidth of the signal to be transmitted	
((b) to combine multiple data streams over a single data channel	
((c) to allow multiple data streams over multiple channels in a prescrib	
((d) to match the frequencies of the signal at the transmitter as well as	the receiver
1-b.	The Bandwidth of Amplitude Modulation is (CO1, K1)	1
((a) f _m	
((b) $f_m/2$	
,	(c) $f_{\rm m}/4$ (d) $2f_{\rm m}$	
1-c.	In a delta modulation system, granular noise occurs when the: (CO2,	K2) 1
((a) modulating signal increases rapidly	,
,	(b) pulse rate decreases	
`	(c) pulse amplitude decreases	
`	(d) modulating signal remains constant	
1-d.	In BASK, distance between the signaling points is (CO2, K2)	1
	(a) $\sqrt{E_b}$	
($_{(b)}$ $\sqrt{2E_{b}}$	

	(c)	$2\sqrt{\mathrm{E_{b}}}$	
	(d)	None of the mentioned	
1-e.	` ′	he bandwidth of BFSK is than BPSK. (CO3, K1)	1
	(a)	Lower	
	(b)	Same	
	(c)	Higher	
	(d)	Not predictable	
1-f.		SSS system spreads the baseband signal by the baseband pulses with a seudo noise sequence. (CO3, K1)	1
	(a)	Adding	
	(b)	Subtracting	
	(c)	Multiplying	
	(d)	Dividing	
1-g.	\mathbf{T}	he method of converting a word to stream of bits is called as (CO4, K1)	1
	(a)	Binary coding	
	(b)	Source coding	
	(c)	Bit coding	
	(d)	Cipher coding	
1-h.	T	he channel capacity is measured in terms of: (CO4, K1)	1
	(a)	bits per channel	
	(b)	number of input channels connected	
	(c)	calls per channel	
	(d)	number of output channels connected	
1-i.	Н	ow error detection and correction is done? (CO5, K2)	1
	(a)	By passing it through equalizer	
	(b)	By passing it through filter	
	(c)	By amplifying it	
	(d)	By adding redundancy bits	
1-j.	T	he hamming distance between 100 and 001 is(CO5, K2)	1
	(a)	2	
	(b)	0	
	(c)	1	
	(d)	None of the mentioned	
2. Atte	empt a	all parts:-	
2.a.	N	ame the elements of Communication system. (CO1, K1)	2
2.b.	W	That is Amplitude Shift Keying? (CO2, K1)	2
2.c.	W	That do you mean by BER? (CO3, K2)	2

2.d.	Calculate the entropy of source with a symbol set containing 64 symbols each with a probability $pi = 1/64$. (CO4, K3)	2
2.e.	Define Syndrome Decoding. (CO5, K1)	2
SECTIO	<u>ON-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Derive an expression for a single tone AM and draw its spectrum. Also derive its power expression. (CO1, K4)	6
3-b.	For the FM signal $m(t) = 10 \cos \left[2\pi \left(10^6\right) t + 5 \sin 2\pi \left(10^3\right) t\right]$. Find the (i) modulation index (ii) modulating frequency (iii) carrier frequency (iv) amplitude of carrier. (CO1, K3)	6
3-c.	What is Pulse Code Modulation technique? Explain the Bandwidth requirements in PCM. (CO2, K2)	6
3-d.	Explain the generation of a FSK with the help of waveform and block diagram. (CO2, K2)	6
3.e.	What are the different sources of noise? Explain in detail. (CO3, K2)	6
3.f.	Elaborate Shannon – Hartley theorem of channel capacity and prove (CO4, K4) $C_{\infty} = 1.44 \frac{S}{n}$	6
3.g.	Explain syndrome decoding for linear block codes in detail. (CO5, K2)	6
SECTIO		50
	er any <u>one</u> of the following:-	
4-a.	Explain Frequency Division Multiplexing using block diagram. (CO1, K2)	10
4-b.	A) A 400watt carrier is modulated to a depth of 75%. Calculate total power in the modulated wave. B) A broadcast radio transmitter radiates 10 Kilowatt when modulation percentage is 60%. How much of this is carrier power? (CO1, K3)	10
5. Answe	er any one of the following:-	
5-a.	What is line coding? Why it is needed? Explain with diagram different types of line coding techniques. (CO2, K2)	10
5-b.	Explain the generation and coherent detection of ASK with the help of waveform and block diagram. (CO2, K2)	10
6. Answ	er any <u>one</u> of the following:-	
6-a.	What is noise? Explain various types of noise in communication. (CO3, K2)	10
6-b.	What are spread spectrum techniques? Explain in detail about Direct Sequence Spread Spectrum Techniques with necessary diagrams? (CO3, K2)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	A source produces six message with probabilities 1/4, 1/4, 1/8, 1/8, 1/8, and 1/8 respectively. Obtain the information content of each message and the entropy of the source. (CO4, K3)	10
7-b.	Write note on following: a) Kraft's inequality, b) Code efficiency, c) Codeword	10

Length, d) Shannon's code. (CO4, K2)

- 8. Answer any one of the following:-
- 8-a. For a Hamming distance of 5, how many errors can be detected and how many can be corrected? (CO5, K3)
- 8-b. Design a syndrome calculator for a (7,4) cyclic Hamming code generated by the polynomial $G(p) = p^3 + p + 1$. Evaluate the syndrome for Y = (1001101). (CO5, K5)

COP. JULY DEC. 2024