Printed Page:-03		Subject Code:- BCSBS0101										
			Roll. No): 			1			1		
NO	TDA .	INSTITUTE OF ENGINEERING A	AND TE		VOI	OCI	<u> </u>	DE	A TE	D N		
NO	IDA .	(An Autonomous Institute Af									1011	JA
		B.T				- , —		,				
		SEM: I - THEORY EXAM					25)					
7 73•	2.1	Subject: Physics for	Comput	ing	Scie	nce			3.5			5 0
Time: 2 Hours General Instructions:									Ma	ax. N	/lari	ks: 50
		y that you have received the question p	naper wit	h th	e co	rrect	сои	rse.	code	e. bri	anch	i etc.
		stion paper comprises of three Sectio n	_									
		MCQ's) & Subjective type questions.							•			
		n marks for each question are indicate	_			side (of ea	ach d	ques	tion.		
		your answers with neat sketches whe	rever nec	essa	ıry.							
		uitable data if necessary. 'y, write the answers in sequential ora	lor									
•	,	should be left blank. Any written mate		ab	lank	shee	t wi	ll no	t be			
		hecked.	rich egrer			Bitee	. ,,,					
SECT	ION-	\mathbf{A}							<			15
1. Atte	empt a	all parts:-										
1-a.	_	he acceleration of particle executing S	S.H.M. w	hen	it is	at me	an 1	osit	ion	is (C	O1,	1
	K										,	
	(a)	infinite										
	(b)	varies	())									
	(c)	maximum										
	(d)	zero										
1-b.	Fo	ormation of Newton's rings are due to	(CO2, K	1)								1
	(a)	interference by division of amplitud	e									
	(b)	interference by division of wave fro										
	(c)	diffraction of light										
	(d)	none										
1-c.	W	Thich law is Maxwell's III rd equation?	(CO3, K	1)								1
	(a)	Gauss' law										
	(b)	Lenz's law										
	(c)	Faraday's law										
	(d)	Ampere's Law										
1-d.	` ′	eroth law of thermodynamics based of	n which r	araı	mete	r (CC)4,]	K1)				1
	(a)	Temperature	r				,	,				
	(b)	Pressure										
	(0)	= = = = = = = = = = = = = = = = = = =										

	(c)	Density	
	(d)	Velocity	
1-e.		the formation of optical fiber core has refractive index than that of adding. (CO5, K1)	1
	(a)	larger	
	(b)	equal	
	(c)	smaller	
	(d)	none	
2. Atte	empt a	ll parts:-	
2.a.	W	hat do you understand by simple harmonic motion (SHM)? (CO1, K1)	2
2.b.	W	hat are main differences between interference and diffraction? (CO2, K1)	2
2.c.	W	hat are intrinsic semiconductors? (CO3, K1)	2
2.d.	W	that do you mean by Carnot's Principle? (CO4, K1)	2
2.e.	W	that is difference between spontaneous and stimulated emission? (CO5, K1)	2
SECT	ION-	${f B}$	15
3. Ans	swer a	ny three of the following:-	
3-a.	as	4 kg mass is hung on the end of a helical string and is pulled down and let go so to vibrate vertically. The mass completes 100 vibrations in 55 second. Calculate e force constant to the spring. (CO1, K3)	5
3-b.	Tł	ewton's rings are observed normally in reflected light of wavelength 5900 Å. ne diameter of the 10 th dark ring is 0.005 m. Find the radius of curvature of the ns and thickness of the air film. (CO2, K3)	5
3.c.	2.	the relative permeability and relative permittivity of the medium are 1.0 and 25, respectively. Find the speed of the electromagnetic wave in this medium. CO3, K3)	5
3.d.		a cyclic process, heat transfers are +14.7kJ, -25.2kJ,- 3.56KJ and +31.5kJ. hat is the net work for this cyclic process?(CO4, K3)	5
3.e.	en	a Ruby laser, total number of Cr^{3+} ions in excited state is 4.0×10^{19} . If the laser nits radiation of wavelength 8000 Angstroms, calculate energy of laser pulse. $(0.05, K3)$	5
SECT	ION-	$\underline{\mathbf{c}}$	20
4. Ans	swer a	ny <u>one</u> of the following:-	
4-a.		nd the differential equation for forced or driven harmonic oscillator and find the lution of it. (CO1, K2)	4
4-b.		nd the expressions for time period and frequency in simple harmonic motion. (O1, K2)	4
5. Ans	swer a	ny <u>one</u> of the following:-	
5-a.	D	erive an expression for n th bright Newton's ring in transmitted light. (CO2, K2)	4
5-b.	D	escribe Fresnel's biprism method to determine wavelength of light. (CO2, K2)	4

6. Answe	er any one of the following:-	
6-a.	Derive Maxwell's 4 th equation. (CO3, K2)	4
6-b.	Define conductors, semiconductors and insulators. Differentiate between them on the basis of band width. (CO3, K1)	4
7. Answe	er any <u>one</u> of the following:-	
7-a.	State second law of thermodynamics. How is heat engine different from refrigerator? (CO4, K1)	4
7-b.	What do you mean by internal energy? On what factors does the internal energy of the gas depend? (CO4, K1)	4
8. Answe	er any one of the following:-	
8-a.	Discuss the construction and working of a CO ₂ laser. (CO5, K2)	4
8-b.	Discuss light propagation mechanism in optical fiber. (CO5, K2)	4

