Affiliated to
DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme \& Syllabus

For
B. Tech in Electronics \& Communication Engineering (ECE) First Year (Effective from the Session: 2021-22)

NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA
 (An Autonomous Institute)

B. TECH (ECE)

Evaluation Scheme

SEMESTER I

Sl. No.	Subject Codes	Subject	Periods			Evaluation Scheme				End Semester		Total	Credit
			L	T	P	CT	TA	TOTAL	PS	TE	PE		
3 WEEKS COMPULSORY INDUCTION PROGRAM													
1	AAS0103	Engineering Mathematics-I	3	1	0	30	20	50		100		150	4
2	AAS0101C	Engineering Physics	3	1	0	30	20	50		100		150	4
3	ACSE0101	Problem Solving using Python	3	0	0	30	20	50		100		150	3
4	AASL0101	Professional Communication	2	0	0	30	20	50		100		150	2
5	AAS0151C	Engineering Physics Lab	0	0	2				25		25	50	1
6	ACSE0151	Problem Solving using Python Lab	0	0	2				25		25	50	1
7	AASL0151	Professional Communication Lab	0	0	2				25		25	50	1
8	AME0151	Digital Manufacturing Practices	0	0	3				25		25	50	1.5
9		MOOCs** (For B.Tech. Hons. Degree)											
		TOTAL										800	17.5

**List of MOOCs (Coursera) Based Recommended Courses for First Year (Semester-I) B. Tech Students

S. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	AMC0001	Introduction to Artificial Intelligence (AI)	IBM	9	0.5
2	AMC0004	Python Basics	University of Michigan	36	3

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA (An Autonomous Institute)

B. TECH (ECE)

Evaluation Scheme

SEMESTER II

Sl. No.	Subject Codes	Subject	Periods			Evaluation Scheme				End Semester		Total	Credit
			L	T	P	CT	TA	TOTAL	PS	TE	PE		
1	AAS0203	Engineering Mathematics-II	3	1	0	30	20	50		100		150	4
2	AAS0202	Engineering Chemistry	3	1	0	30	20	50		100		150	4
3	ACSE0201	Programming for Problem Solving using C	3	0	0	30	20	50		100		150	3
4	AEC0201	Basic Electrical and Electronics Engineering.	3	1	0	30	20	50		100		150	4
5		Foreign Language*	2	0	0	30	20	50		50		100	2
6	AAS0252	Engineering Chemistry Lab	0	0	2				25		25	50	1
7	AEC0251	Basic Electrical and Electronics Engineering Lab	0	0	2				25		25	50	1
8	ACSE0251	Programming for Problem Solving using C Lab	0	0	2				25		25	50	1
9	AME0252	Engineering Graphics \&Solid Modelling	0	0	3				25		25	50	1.5
10		MOOCs** (For B.Tech. Hons. Degree)											
		TOTAL										900	21.5

*Foreign Language:

1. AASL0202 French
2. AASL0203 German
3. AASL0204 Japanese
**List of MOOCs (Coursera) Based Recommended Courses for First Year (Semester-II) B. Tech Students

S. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	AMC0010	IoT Devices	University of Illinois at Urbana-Champaign	13	1
2	AMC0014	Python Classes and Inheritance	University of Michigan	17	1

PLEASE NOTE:-

- Internship (3-4 weeks) shall be conducted during summer break after II semester and will be assessed during III semester

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute)

B. TECH (ECE)

[^0]

	Leibnitz theorems and total derivatives	
CO 3	Apply partial differentiation for evaluating maxima, minima, Taylor's series and Jacobians.	K_{3}
CO 4	Apply the concept of multiple integral to find area, volume, centre of mass and centre of gravity.	K_{3}
CO 5	Solve the problems of Profit, Loss, Number \& Series, Coding \& decoding.	K_{3}
Text books		

Text books

(1) B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw-Hill Publishing Company Ltd..
(2) B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher.
(3) R K. Jain \& S R K. Iyenger , Advance Engineering Mathematics, Narosa Publishing House .

Reference Books:

(1) E. Kreyszig, Advance Engineering Mathematics, John Wiley \& Sons.
(2) Peter V. O’Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.
(3) Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas, Calculus, Eleventh Edition, Pearson.
(4) D. Poole, Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole.
(5) Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
(6) Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill; Sixth Edition.
(7) P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education Services Pvt. Ltd
(8) Advanced Engineering Mathematics. Chandrika Prasad, ReenaGarg.
(9) Engineering Mathemathics - I. ReenaGarg.
(10) Quantitative Aptitude by R.S. Aggrawal.

Link:

Unit 1	https://www.youtube.com/watch?v=kcL5WWJjmIU $\underline{\text { https://www.youtube.com/watch?v=VTHz4gjzsKI }}$ $\underline{\text { https://youtu.be/56dEt9EOZ_M }}$ $\underline{\text { https://www.youtube.com/watch?v=njDiwB43w80 }}$ $\underline{\text { htps://www.youtube.com/watch?v=N33SOw1A5fo }}$

	https://www.youtube.com/watch?v=yLi8RxqfowA www.math.ku.edu/~lerner/LAnotes/Chapter5.pdf http://www.math.hawaii.edu/~lee/linear/sys-eq.pdf https://youtu.be/41Y38WjHbtE https://www.youtube.com/watch?v=4jcvZmMK_28 https://www.youtube.com/watch?v=G4N8vJpf7hM https://www.youtube.com/watch?v=r5dIXpssvrA https://youtu.be/ZX5YnDMzwbs http://web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf https://www.youtube.com/watch?v=iKQESPLDnnI https://math.okstate.edu/people/binegar/3013-S99/3013-116.pdf https://www.youtube.com/watch?v=kGdezES-bDU
Unit 2	https://www.youtube.com/watch?v=tQxk5IX9S_8\&list=PLbu_fGT0MPstS3DTIyqkUecSW_7axd xKe https://www.youtube.com/watch?v=U5sGFf0DjLs\&t=34s https://www.youtube.com/watch?v=TCPPvRfHtXw https://www.youtube.com/watch?v=PkuPGKSacu0\&list=PL2FUpm_Ld1Q3H00wVFuwjWOo1gt MXk1eb https://www.youtube.com/watch?v=QeWrQ9Fz3Wo\&t=22s https://www.youtube.com/watch?v=5dFrWCE6bHg https://www.youtube.com/watch?v=WX609TiFYsA\&t=110s https://www.youtube.com/watch?v=GII1ssdR2cg\&list=PLhSp9OSVmeyK2yt8hdoo3Qze3O0Y67 qaY
Unit 3	https://www.youtube.com/watch?v=6tQTRlbkbc8 https://www.youtube.com/watch?v=McT-UsFx1Es https://www.youtube.com/watch?v=_1TNtFqiFQo https://www.youtube.com/watch?v=X6kp2o3mGtA https://www.youtube.com/watch?v=btLWNJdHzSQ https://www.youtube.com/watch?v=jiEaKYIOATY

	https://www.youtube.com/watch?v=r6lDwJZmfGA https://www.youtube.com/watch?v=Jk9xMY4mPH8 https://www.youtube.com/watch?v=fqq_UR4zhfI https://www.youtube.com/watch?v=G0V_yp0jz5c https://www.youtube.com/watch?v=9-tir2V3vYY https://www.youtube.com/watch?v=jGwA4hknYp4
Unit 4	https://www.youtube.com/watch?v=3BbrC9JcjOU https://www.youtube.com/watch?v=-DduB46CoZY https://www.youtube.com/watch?v=VvKAuFBJLs0 https://www.youtube.com/watch?v=4rc3w1sGoNU https://www.youtube.com/watch?v=X6kp2o3mGtA\&t=1003s https://www.youtube.com/watch?v=wtY5fx6VMGQ\&t=1151s https://www.youtube.com/watch?v=-I3HUeHi1Ys\&t=1933s https://www.youtube.com/watch?v=kfv9h3c46CI https://www.youtube.com/watch?v=9 m36W3cK74 https://www.youtube.com/watch?v=HQM7XMd5QQo - https://www.GovernmentAdda.com
Unit 5	https://www.GovernmentAdda.com

B.TECH FIRST YEAR				
Course Code	AAS0101C	L T	P	Credit
Course Title	Engineering Physics	3	0	4
Course objective:				
1	To provide the knowledge of Relativistic Mechanics and their uses to engineering applications.			
2	To provide the knowledge of Quantum Mechanics and to explore possible engineering utilization.			
3	To provide the knowledge of interference and diffraction.			
4	To provide the basic concept of Electromagnetics.			
5	To provide the knowledge of Dielectric properties of material and to explore possible engineering applications.			
Pre-requisites: Newton's laws of motions, scalar and vectors, electricity and magnetism, basic laws of optics.				
Course Contents / Syllabus				
UNIT-I	Relativistic Mechanics			8 hours
Frame of reference, Inertial \& non-inertial frames, Galilean transformations, Michelson-Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Velocity addition theorem, Variation of mass with velocity, Einstein's mass energy relation, Relativistic relation between energy and momentum, Massless particle. Some engineering applications(qualitative): Global positioning system (GPS), Application to Satellites.				
UNIT-II	Quantum Mechanics			8 hours
Introduction to wave-particle duality, de Broglie matter waves, Phase and group velocities, Heisenberg's uncertainty principle and its applications, Wave function characteristics and significance, Time-dependent and time- independent Schrödinger's wave equations, Particle in one-dimensional rigid box, Theory of Quantum excitation of the Higgs field (Higgs Boson or GOD particle) (qualitative).				
UNIT-III	Wave Optics			10 hours
Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources, Newton's Rings and its applications. Fraunhofer diffraction at single slit and at double slit, absent				

spectra, Diffraction grating, grating spectra, Rayleigh's criterion of resolution, Resolving power of grating, Optical filters.

UNIT-IV	Electromagnetic Field Theory	8 hours

Continuity equation for current density, Displacement current, Maxwell's equation in differential and integral form, Energy in an electromagnetic field, Poynting vector and Poynting theorem, Plane electromagnetic waves in vacuum and their transverse nature, Relation between electric and magnetic field of an electromagnetic wave, energy and momentum carried by electromagnetic wave, radiation pressure, Skin depth.

Some engineering applications(qualitative): Electromagnetic signature of UAV (Drone).

UNIT-V	Dielectric Properties of Materials	6 hours

Dielectric constant and polarization of dielectric material, Types of polarization, Polarizability, Equation of internal field in liquid and solids in one dimension, Claussius-Mossotti equation, Frequency dependence of dielectric constant, Dielectric losses (qualitative), Ferro-\& Piezo- electricity (qualitative).

Some engineering applications(qualitative): RAM \& RFID.
Course outcome: After completion of this course students willbeable to:

CO 1	Solve the relativistic mechanics problems	K1,K2,K3
CO 2	Apply the concept of quantum mechanics	K1,K2,K3
CO 3 Apply the laws of optics and their application in various processes	K1,K2,K3	
CO 4	Apply the concept of electromagnetics.	K1,K2,K3
CO 5	Discuss the dielectric properties of material and their possible engineering applications.	K1,K2
Text books	A. Beiser, Concepts of Modern Physics (McGraw Hill)	
1.	Brijlal\&Subramanian,Optics - (S. Chand)	
2.	Neeraj Mehta, Applied Physics for Engineers(PHI Learning, New)	
Reference Books		
1. Robert Resnick,Introductionto Special Theory of Relativity (Wiley)		
2. Katiyar and Pandey,Engineering Physics: Theory and Practical (Wiley India)		
3. H. K. Malik and A. K. Singh,Engineering Physics (McGrawHill)		
4. J.W. Jewett , Jr. and R. A. Serway , Physics for Scientists and Engineers with Modern		

Physics,7th Edn. (CENGAGE Learning)
5. C. Kittel, Solid State Physics,7th Edn. (Wiley Eastern)
6. V. Raghavan, Materials Science and Engineering (Prentice Hall, India)
7. S.O. Pillai, Solid State Physics,5th Edn (New Age International)
8. R. Booker and E. Boysen , Nanotechnology (Wiley Publ.)
9. K.Rajagopal, Engineering Physics, 2nd Edn. (PHI Learning)
10. G. Aruldhas , Engineering Physics (PHI Learning)
11. S.D. Jain and G.S. Sahasrabudhe , Engineering Physics (Universities Press)
12. L. F. Bates, Modern Magnetism, (Cambridge Univ. Press)
13. F.T.S.Yu , X.-Y.Yang, Introduction to Optical Engineering (Cambridge Univ.Press)
14. G.Keiser, Optical Communications Essentials (Tata McGrawHill)

B. TECH FIRST YEAR			
Course Code	ACSE0101	L T	Credit
Course Title	Problem solving using Python	3000	3
Course objective:			
To i	To impart knowledge of basic building blocks of Python programming		
$2 \quad$ To p	To provide skills to design algorithms for problem solving		
$\begin{aligned} & \text { To ir } \\ & \text { Pyth } \end{aligned}$	To impart the knowledge of implementation and debugging of basic programs in Python		
4 To d	To disseminate the knowledge of basic data structures		
5 To p hand	To provide the knowledge of file system concepts and its application in data handling		
Pre-requisites:Students are expected to be able to open command prompt window or terminal window, edit a text file, download and install software, and understand basic programming concepts.			
Course Contents / Syllabus			
UNIT-I	Basics of python programming		8 hours
Introduction: Introduction to computer system, algorithms, Ethics and IT policy in company, Feature of object-oriented programming, A Brief History of Python,Applications areas of python, The Programming Cycle for Python, Python IDE, Interacting with Python Programs. Elements of Python:keywords and identifiers, variables, data types and type conversion, operators in python, expressions in python, strings.			
UNIT-II	Decision Control Statements		8 hours
Conditionals: Conditional statement in Python (if-else statement, its working and execution), Nested-if statement and elif statement in Python, Expression Evaluation \& Float Representation. Loops: Purpose and working of loops, while loop, For Loop, Nested Loops,Break and Continue, pass statement.			
UNIT-III	Function and Modules		8 hours
Introduction of Function, calling a function, Function arguments, built in function, scope rules,			

Passing function to a function, recursion, Lambda functions
Modules and Packages: Importing Modules, writing own modules, Standard library modules, dir() Function, Packages in Python

UNIT-IV	Basic Data structures in Python	$\mathbf{8}$ hours
St		

Strings: Basic operations, IndexingandSlicing of Strings, Comparing strings, Regular expressions.

Python BasicData Structure: Sequence, Unpacking Sequences, Mutable Sequences, Lists,ListComprehension, Looping in lists, Tuples, Sets, Dictionaries

UNIT-V	File and Exception handling	8 hours

Files and Directories: Introduction to File Handling in Python, Reading and Writing files, Additional file methods, Working with Directories.

Exception Handling, Errors, Run Time Errors, Handling IO Exception, Try-except statement, Raise, Assert

Searching \&Sorting:Simple search \& Binary search,Selection Sort, Merge Sort

Course outcome: At the end of course, the student will be able to

CO 1	Write simple python programs.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
CO 2	Develop python programs usingdecision control statements	$\mathrm{K}_{3}, \mathrm{~K}_{6}$
CO 3	Implement user defined functions and modules in python	K_{2}
CO 4	Implement python data structures -lists, tuples, set, dictionaries	K_{3}
CO 5	Perform input/output operations with files in python and implement searching, sorting and merging algorithms	$\mathrm{K}_{3}, \mathrm{~K}_{4}$

Text books

(1) Magnus Lie Hetland, "Beginning Python-From Novice to Professional"-Third Edition, Apress
(2) Python Programming using Problem solving approach by ReemaThareja OXFORD

Higher education
(3) Kenneth A. Lambert, -Fundamentals of Python: First Programs, CENGAGE Learning, 2012.

Reference Books

(1) John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013
(2) Charles Dierbach, -Introduction to Computer Science using Python: A Computational Problem Solving Focus, Wiley India Edition, 2013.
(3) Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O‘Reilly Publishers, 2016
(4) Robert Sedgewick, Kevin Wayne, Robert Dondero: Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd.,2016.
(5) Timothy A. Budd, -Exploring Pythonll, Mc-Graw Hill Education (India) Private Ltd.,2015.
(6) Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python - Revised and updated for Python 3.2, Network Theory Ltd., 2011.

E-book and E-Content

(1) https://www.pdfdrive.com/hacking-hacking-practical-guide-for-beginners-hacking-with-pythn-e182434771.html
(2) https://www.pdfdrive.com/python-programming-python-programming-for-beginners-python-programming-for-intermediates-e180663309.html
(3)https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e175246184.html
(4) https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e $160968277 . \mathrm{html}$
(5) https://docs.python.org/3/library/index.html
(6) https://www.w3schools.com/python/
(7) https://www.py4e.com/materials

Reference Links

Unit-1 https://nptel.ac.in/courses/106/106/106106182/
Unit-2 https://nptel.ac.in/courses/106/106/106106212/
Unit-3 https://nptel.ac.in/courses/106/106/106106145/

Unit-4- https://nptel.ac.in/courses/106/106/106106145/
Unit-5- https://nptel.ac.in/courses/106/106/106106145/
[Unit-2]- https://www.youtube.com/watch?v=PqFKRqpHrjw
$[$ Unit - 3]- https://www.youtube.com/watch?v=m9n2f91htrw https://www.youtube.com/watch?v=oSPMmeaiQ68
[Unit 4]- https://www.youtube.com/watch?v=ixEeeNjjOJ0\&t=4s
After Completing Course Student may get certification in python using following links: Link for Certification: https://swayam.gov.in/nd1 noc19 cs41/preview https://aktu.ict.iitk.ac.in/courses/python-programming-a-practical-approach/

B. TECH FIRST YEAR				
Course	Code	AAS0151C	L T P	Credit
Course	Title	Engineering Physics Lab	0 0 2	1
Suggested list of Experiment				
Sr. No.	Name of Experiment (Minimum Ten experiments should be performed)			
1	To determine the wavelength of monochromatic light by Newton's ring.			
2	To determine the focal length of two lenses by nodal slide and to verify the formula for the focal length of combination of two lenses.			
3	To determine the specific rotation of cane sugar solution using Polarimeter.			
4	To determine the wavelength of spectral lines using plane transmission Grating.			
5	To determine the specific resistance of a given wire using Carey Foster's bridge.			
6	To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil.			
7	To verify Stefan's Law by electrical method.			
8	To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of given semiconductor material using hall effect setup.			
9	To determine the energy band gap of a given semiconductor material.			
10	To determine the coefficient of viscosity of a liquid.			
11	Calibration of a voltmeter using potentiometer.			
12	Calibration of a ammeter using potentiometer.			
13	To determine E.C.E. of copper using Tangent or Helmholtz galvanometer.			
14	To determine the magnetic susceptibility of a ferromagnetic salt $\left(\mathrm{FeCl}_{3}\right)$ by using Quincke tube method.			
15	To study the hysteresis curve and then to estimate the retentively and coercivity of a give ferromagnetic material.			
16	To determine the angle of divergence of laser beam using He-Ne Laser.			
17	To determine the wavelength of laser using diffraction grating.			
18	To determine the numerical aperture of optical fiber.			
Lab Course Outcome: After completion of this course students willbeable to:				
CO 1	Apply the practical knowledge of the phenomenon of interference, diffraction and polarization.			
CO 2	Understand energy band gap and resistivity.			
CO 3	Develop the measurement techniques of magnetism.			
CO 4	Analyze the flow of liquids.			
Link:				
Unit 1	https://www.youtube.com/watch?v=lzBKIY4f1XA\&list=PL10WTjZXSIIHKMnU4UCxpPsHyAf n1O6\&index=11			
Unit 2	http://nptel.ac.in/ , http://www.mit.edu/			

Unit 3	https://www.youtube.com/watch?v=bWTxf5dSUBE ,http://ocw.mit.edu/ http://nptel.ac.in/
Unit 4	https://www.youtube.com/watch?v=6vyYRnLvnqI

B.TECH FIRST YEAR			
Lab Code	ACSE0151	L T P	Credit
Lab Title	Problem Solving using Python Lab	$\mathbf{0}$ 0 2	$\mathbf{1}$
Course outcome: At the end of course, the student will be able to			
CO 1	Write simple python programs.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$	
CO 2	Implement python programs usingdecision control statements	$\mathrm{K}_{3}, \mathrm{~K}_{6}$	
CO 3	Writing python programs using user defined functions and modules	K_{2}	
CO 4	Implement programs using python data structures -lists, tuples, set, dictionaries	K_{3}	
CO 5	Write programs to perform input/output operations on files	$\mathrm{K}_{3}, \mathrm{~K}_{4}$	

List of Experiment:

List of Fundamental Programs		
S.N.	Program Title	Catagory
1	Python Program to print "Hello Python"	Basic
2	Python Program to read and print values of variables of different data types.	Basic
3	Python Program to perform arithmetic operations on two integer numbers	Basic
4	Python Program to Swap two numbers	Basic
5	Python Program to convert degree Fahrenheit into degree Celsius	Operators
6	Python Program to demonstrate the use of relational operators.	Operators
7	Python Program to understand the working of bitwise and logical operators.	Operators
8	Python Program to calculate roots of a quadratic equation.	Conditional
9	Python Program to check whether a year is leap year or not.	Conditional
10	Python Program to find smallest number among three numbers.	Conditional
11	Python Program to make a simple calculator.	Conditional
12	Python Program to find the factorial of an integer number.	Loop
13	Python Program to find the reverse of an integer number.	Loop
14	Python Program to find and print all prime numbers in a list.	Loop
15	Python Program to Find the Sum of 'n' Natural Numbers	Loop
16	Python Program to print sum of series: - 1/2 + 2/3+ 3/4 ++n/(n+1)	Loop
17	Python Program to print pattern using nested loop	Loop
18	Python Program to Display the multiplication Table of an Integer	Loop
19	Python Program to Print the Fibonacci sequence	Loop
20	Python Program to Check Armstrong Number	Loop
21	Python Program to Find Armstrong Number in an Interval	Loop

22	Python Program to check Using function whether a passed string is palindrome or not	Function
23	Python Program using function that takes a number as a parameter, check whether the number is prime or not.	Function
24	PythonProgram using function that computes gcd of two given numbers.	Function
25	Python Program to Find LCM of two or more given numbers.	Function
26	Python Program to Convert Decimal to Binary, Octal and Hexadecimal	Function
27	Python Program To Find ASCII value of a character	Basic
28	Python Program to Display Calendar	Loop
29	Python Program to Add Two Matrices	Loop
30	Python Program to Multiply Two Matrices	Loop
31	Python Program to Transpose a Matrix	Loop
32	Python Program to Sort Words in Alphabetic Order	Sorting
33	Python Program to Display Fibonacci Sequence Using Recursion	Recursion
34	Python Program to Find Factorial of Number Using Recursion	Recursion
35	Python Program that implements different string methods.	String
36	Python Program that validates given mobile number. Number should start with 7,8 or 9 followed by 9 digits.	String
37	Python Program to implement various methods of a list.	List
38	Python Program that has a nested list to store toppers details. Edit the details and reprint them.	List
39	Python Program to swap two values using tuple assignment.	Tuple
40	Python Program that has a set of words in English language and their corresponding Hindi words. Define dictionary that has a list of words in Hindi language and their corresponding Hindi Sanskrit. Take all words from English language and display their meaning in both languages.	Dictionary
41	Python Program that inverts a dictionary.	Dictionary
42	Python Program that reads data from a file and calculates percentage of white spaces, lines, tabs, vowels and consonants in that file.	File
43	Python Program that fetches data from a given url and write it in a file.	File
44	Python Program to understand the concept of Exception Handling	Exception Handling
45	Python Program to implement linear and binary search	Searching
46	Python Program to sort a set of given numbers using Bubble sort	Sorting
S.No.	Word Problem Experiments	
1.	String Rotation Problem Description Rotate a given String in the specified direction by specified magnitude. After each rotation make a note of the first character of the rotated String, after all rotation are performed the accumulated first character as noted previously will form another string, say FIRSTCHARSTRING.	

	Check If FIRSTCHARSTRING is an Anagram of any substring of the Original string. If yes print "YES" otherwise "NO". Input The first line contains the original string s. The second line contains a single integer q . The ith of the next q lines contains character $d[i]$ denoting direction and integer $r[i]$ denoting the magnitude. Constraints $1<=$ Length of original string <= 30 $1<=\mathrm{q}<=10$ Output YES or NO Explanation Example 1 Input carrace 3 L 2 R 2 L3 Output NO Explanation After applying all the rotations, the FIRSTCHARSTRING string will be "rcr" which is not anagram of any sub string of original string "carrace".
2.	Jurassic Park Problem Description Smilodon is a ferocious animal which used to live during the Pleistocene epoch (2.5 mya-10,000 years ago). Scientists successfully created few smilodons in an experimental DNA research. A park is established and those smilodons are kept in a cage for visitors. This park consists of Grasslands(G), Mountains(M) and Waterbodies(W) and it has three gates (situated in grasslands only). Below is a sample layout. Before opening the park, club authority decides to calculate Safety index of the park. The procedure of the calculation is described below. Please help them to calculate. Safety Index calculation Assume a person stands on grassland(x) and a Smilodon escapes from the cage situated on grassland(y). If the person can escape from any of those three gates before

the Smilodon able to catch him, then the grassland(x) is called safe else it is unsafe. A person and a Smilodon both take 1 second to move from one area to another adjacent area(top, bottom, left or right) but a person can move only over grasslands though Smilodon can move over grasslands and mountains.
If any grassland is unreachable for Smilodon(maybe it is unreachable for any person also), to increase safe index value Club Authority use to mark those grasslands as safe land. Explained below

For the above layout, there is only one gate at $(4,6)$
Y is the position of Smilodon's cage
X is not safe area
Z is a safe area as is it not possible for smilodon to reach z
Safety index=(total grassland areas which are safe*100)/total grassland area

Constraints

i. $3<=\mathrm{R}, \mathrm{C}<=10^{\wedge} 3$
ii. Gates are situated on grasslands only and at the edge of the park
iii. The cage is also situated in grassland only
iv. The position of the cage and the position of three gates are different

Input Format

The first line of the input contains two space-separated integers R and C , denoting the size of the park $\left(\mathrm{R}^{*} \mathrm{C}\right)$
The second line contains eight space-separated integers where
First two integers represent the position of the first gate
3rd and 4th integers represent the position of second gate
5th and 6th integers represent the position of third gate respectively
The last two integers represent the position of the cage
Next R lines, each contains space separated C number of characters. These R lines represent the park layout.

Output

Safety Index accurate up to two decimal places using Half-up Rounding method
Explanation
Example 1
Input
44
11213113
G GGG
G W W M
G G W W

	$\begin{array}{\|l} \hline \text { M G M M } \\ \text { Output } \\ 75.00 \\ \hline \end{array}$
3.	Bank Compare Problem Description There are two banks; Bank A and Bank B. Their interest rates vary. You have received offers from both bank in terms of annual rate of interest, tenure and variations of rate of interest over the entire tenure. You have to choose the offer which costs you least interest and reject the other. Do the computation and make a wise choice. The loan repayment happens at a monthly frequency and Equated Monthly Installment (EMI) is calculated using the formula given below : EMI $=$ loanAmount $*$ monthlyInterestRate/($1-1 /(1$ + monthlyInterestRate)^(numberOfYears * 12)) Constraints i. $\quad 1<=\mathrm{P}<=1000000$ ii. $\quad 1<=\mathrm{T}<=50$ iii. $\quad 1<=\mathrm{N} 1<=30$ iv. $\quad 1<=\mathrm{N} 2<=30$ Input Format First line : P - principal (Loan Amount) Second line : T-Total Tenure (in years). Third Line : N1 is number of slabs of interest rates for a given period by Bank A. First slab starts from first year and second slab starts from end of first slab and so on. Next N1 line will contain the interest rate and their period. After N1 lines we will receive N2 viz. the number of slabs offered by second bank. Next N2 lines are number of slabs of interest rates for a given period by Bank B. First slab starts from first year and second slab starts from end of first slab and so on. The period and rate will be delimited by single white space. Output Your decision - either Bank A or Bank B. Explanation Example 1 Input 10000 20 3 59.5 109.6 58.5 3 106.9 58.5

$\left.\begin{array}{|c|l|}\hline \text { 4. } & \begin{array}{l}\text { 5 7.9 } \\ \text { Output } \\ \text { Bank B }\end{array} \\ \hline \begin{array}{l}\text { Cross Words } \\ \text { Problem Description } \\ \text { A crossword puzzle is a square grid with black and blank squares, containing clue } \\ \text { numbers (according to a set of rules) on some of the squares. The puzzle is solved by } \\ \text { obtaining the solutions to a set of clues corresponding to the clue numbers. } \\ \text { The solved puzzle has one letter in each of the blank square, which represent a } \\ \text { sequence of letters (consisting of one or more words in English or occasionally other } \\ \text { languages) running along the rows (called "Across", or "A") or along the columns } \\ \text { (called "Down" or "D"). Each numbered square is the beginning of an Across solution } \\ \text { or a Down solution. Some of the across and down solutions will intersect at a blank } \\ \text { square, and if the solutions are consistent, both of them will have the same letter at the } \\ \text { intersecting square. } \\ \text { In this problem, you will be given the specifications of the grid, and the solutions in } \\ \text { some random order. The problem is to number the grid appropriately, and associate } \\ \text { the answers consistently with the clue numbers on the grid, both as Across solutions } \\ \text { and as Down solutions, so that the intersecting blank squares have the same letter in } \\ \text { both solutions. } \\ \text { Rules for Clue Numbering } \\ \text { The clue numbers are given sequentially going row wise (Row 1 first, and then row2 } \\ \text { and so on) } \\ \text { Only blank squares are given a clue number } \\ \text { A blank square is given a clue number if either of the following conditions exist (only } \\ \text { one number is given even if both the conditions are satisfied) } \\ \text { It has a blank square to its right, and it has no blank square to its left (it has a black } \\ \text { square to its left, or it is in the first column). This is the beginning of an Across } \\ \text { solution with that number } \\ \text { It has a blank square below it, and no blank square above it (it has a black square } \\ \text { above it or it is in the first row). This is the beginning of a Down solution with that } \\ \text { number } \\ \text { Constraints } \\ \text { i. }\end{array} \\ \text { InseN<=15 } \\ \text { Input Format } \\ \text { The input consists of two parts, the grid part and the solution part } \\ \text { The first line of the grid part consists of a number, N, the size of the grid (the overall } \\ \text { grid is N x N) squares. The next N lines correspond to the N rows of the grid. Each } \\ \text { line is comma separated, and has number of pairs of numbers, the first giving the } \\ \text { position (column) of the beginning of a black square block, and the next giving the } \\ \text { length of the block. If there are no black squares in a row, the pair "0,0" will be }\end{array}\right\}$

	specified. For example, if a line contains " $2,3,7,1,14,2$ ", columns $2,3,4$ (a block of 3 starting with 2), 7 (a block of 1 starting with 7) and 14,15 (a block of 2 starting with 14) are black in the corresponding row. The solution part of the input appears after the grid part. The first line of the solution part contains M , the number of solutions. The M subsequent lines consist of a sequence of letters corresponding to a solution for one of the Across and Down clues. All solutions will be in upper case (Capital letters) Output The output is a set of M comma separated lines. Each line corresponds to a solution, and consists of three parts, the clue number, the letter A or D (corresponding to Across or Down) and the solution in to that clue (in upper case) The output must be in increasing clue number order. Ifa clue number has both an Across and a Down solution, they must come in separate lines, with the Across solution coming before the Down solution. Explanation Example 1 Input 5 5,1 1,1,3,1,5,1 0,0 1,1,3,1,5,1 1,1 5 EVEN ACNE CALVE PLEAS EVADE Output 1,A,ACNE 2,D,CALVE 3,D,EVADE 4,A,PLEAS 5,A,EVEN
5.	Skateboard Problem Description The amusement park at Patagonia has introduced a new skateboard competition. The skating surface is a grid of Nx N squares. Most squares are so constructed with slopes that it is possible to direct the skateboard in any of up to three directions of the possible four (North ,East, South or West, represented by the letters N, E, S and W

respectively). Some squares however have a deep drop from the adjacent square from which it is impossible to go to any adjacent square. These are represented by D (for Drop) in that square. The objective is to maneuver the skateboard to reach the South East corner of the grid, marked F.
Each contestant is given a map of the grid, which shows where the Drop squares are (marked D), where the Final destination is (marked F), and, for each other square, the directions it is possible to maneuver the skateboard in that square.
The contestant draws lots to determine which of the squares on the boundaries of the grid on the North or the West of the grid (the top or the left in the diagram) he or she should start in. Then, using a map of the grid, he or she needs to try to reach the South East corner destination by maneuvering the skateboard.

In some cases, it is impossible to reach the destination. For example, in the diagram above, if one starts at the North East corner (top right in the diagram), the only way is to go is South, until the Drop square is reached (three squares South), and the contestant is stuck there.

A contestant asks you to figure out the number of squares at the North or West boundary (top or left boundary in the map) from which it is feasible to reach the destination.

Constraints

i. $\quad 5<=\mathrm{N}<=50$

Input Format

The first line of the input is a positive integer N , which is the number of squares in each side of the grid.
The next N lines have a N strings of characters representing the contents of the map for that corresponding row. Each string may be F, representing the Final destination, D , representing a drop square, or a set of up to three of the possible four directions (N,E,S,W) in some random order. These represent the directions in which the contestant can maneuver the skateboard when in that square.

Output

The output is one line with the number of North or West border squares from which
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { there is a safe way to maneuver the skateboard to the final destination. } \\ \text { Explanation } \\ \text { Example 1 } \\ \text { Input } \\ 6 \\ \text { ES,ES,SE,ES,ES,S } \\ \text { SE,ES,SE,ES,ES,S } \\ \text { ES,ES,SE,ES,SE,S } \\ \text { ES,SE,ES,SE,E,D } \\ \text { SE,ES,D,WSE,NES,NS } \\ \text { E,E,NE,E,E,F } \\ \text { Output } \\ 9\end{array} \\ \hline \text { 6. } & \begin{array}{l}\text { Chakravyuha } \\ \text { Problem Description } \\ \text { During the battle of Mahabharat, when Arjuna was far away in the battlefield, Guru } \\ \text { Drona made a Chakravyuha formation of the Kaurava army to capture } \\ \text { YudhisthirMaharaj. Abhimanyu, young son of Arjuna was the only one amongst the } \\ \text { remaining Pandava army who knew how to crack the Chakravyuha. He took it upon } \\ \text { himself to take the battle to the enemies. } \\ \text { Abhimanyu knew how to get power points when cracking the Chakravyuha. So great } \\ \text { was his prowess that rest of the Pandava army could not keep pace with his advances. } \\ \text { Worried at the rest of the army falling behind, YudhisthirMaharaj needs your help to } \\ \text { track of Abhimanyu's advances. Write a program that tracks how many power points } \\ \text { Abhimanyu has collected and also uncover his trail } \\ \text { A Chakravyuha is a wheel-like formation. Pictorially it is depicted as below }\end{array} \\ \text { A Chakravyuha has a very well-defined co-ordinate system. Each point on the co- } \\ \text { ardinate system is manned by a certain unit of the army. The Commander-In-Chief is } \\ \text { always located at the centre of the army to better co-ordinate his forces. The only way } \\ \text { to crack the Chakravyuha is to defeat the units in sequential order. } \\ \text { A Sequential order of units differs structurally based on the radius of the Chakra. The } \\ \text { radius can be thought of as length or breadth of the matrix depicted above. The }\end{array}\right\}$
structure i.e. placement of units in sequential order is as shown below

1	2	3	4	5
16	17	18	19	6
15	24	25	20	7
14	23	22	21	8
13	12	11	10	9

Fig 2. Army unit placements in Chakravyuha of size 5
The entry point of the Chakravyuha is always at the $(0,0)$ co-ordinate of the matrix above. This is where the 1 st army unit guards. From (0,0) i.e. 1st unit Abhimanyu has to march towards the center at $(2,2)$ where the 25 th i.e. the last of the enemy army unit guards. Remember that he has to proceed by destroying the units in sequential fashion. After destroying the first unit, Abhimanyu gets a power point. Thereafter, he gets one after destroying army units which are multiples of 11 . You should also be a in a position to tell YudhisthirMaharaj the location at which Abhimanyu collected his power points.

Input Format:

First line of input will be length as well as breadth of the army units, say N

Output Format:

- Print NxN matrix depicting the placement of army units, with unit numbers delimited by (\t) Tab character
- Print Total power points collected
- Print coordinates of power points collected in sequential fashion (one per line)
- Constraints: $0<\mathrm{N}<=100$

Sample Input and Output

$\mathbf{S} .$ NO.	Input	Output
1	2	12 43 Total Power points : 1 $(0,0)$
2	5	1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9 Total Power points : 3 $(0,0)$ $(4,2)$

	$\left.\begin{array}{l}\text { ii. } \\ \\ \\ \\ \\ \text { iii. } \\ \text { iv. }\end{array} \begin{array}{l}\text { columns } \\ \text { Second lin } \\ \text { line will co } \\ \text { Next line } \\ \text { Next line }\end{array}\right]$		contains number of hurdles H followed by H lines, each tain one hurdle point in the matrix. ll contain point A, starting point in the matrix. $1 l$ contain point B , stop point in the matrix. ength of the longest route from point A to point B in the m one position to another will be 1 unit. nce visited in a particular path cannot be visited again. only consider adjacent hops. The route cannot consist of s. with a hurdle cannot be visited. MxN signifies that the matrix consists of rows ranging from d columns ranging from 0 to $\mathrm{N}-1$. ation is not reachable or source/ destination overlap with t cost as -1 .
			Explanation
			Here matrix will be of size 3×10 matrix with a hurdle at $(1,2),(1,5)$ and $(1,8)$ with starting point $\mathrm{A}(0,0)$ and stop point $\mathrm{B}(1,7)$ 310 3 -- (no. of hurdles) 12 15 18 00 -- (position of A) 17 -- (position of B) ($->$) count is 24 . So final answer will be 24 . No other route longer than this one is possible in this matrix.
			No path is possible in this $2 * 2$ matrix so answer is -1
11.	Min Product array Problem Description The task is to find the minimum sum of Products of two arrays of the same size, given		

	that k modifications are allowed on the first array. In each modification, one array element of the first array can either be increased or decreased by 2 . Note- the product sum is Summation (A[i]*B[i]) for all ifrom 1 to n where n is the size of both arrays Input Format: i. First line of the input contains n and k delimited by whitespace ii. Second line contains the Array A (modifiable array) with its values delimited by spaces iii. Third line contains the Array B (non-modifiable array) with its values delimited by spaces Output Format: Output the minimum sum of products of the two arrays Constraints: $\begin{aligned} \text { i. } & & 1 \leq \mathrm{N} \leq 10^{\wedge} 5 \\ \text { ii. } & & 0 \leq\|\mathrm{A}[\mathrm{i}]\|,\|\mathrm{B}[\mathrm{i}]\| \leq 10^{\wedge} 5 \\ \text { iii. } & & 0 \leq \mathrm{K} \leq 10^{\wedge} 9 \end{aligned}$ Sample Input and Output
	S.No. Input Output
	1 35 -31 $12-3$ $-23-5$
	$\left.$2 53 25 23 3454 3 4 2 3$\quad \right\rvert\,$2
	Explanation for sample 1: Here total numbers are 3 and total modifications allowed are 5 . So we modified A[2], which is -3 and increased it by 10 (as 5 modifications are allowed). Now final sum will be $\begin{aligned} & (1 *-2)+(2 * 3)+(7 *-5) \\ & -2+6-35 \\ & -31 \end{aligned}$ -31 is final answer. Explanation for sample 2: Here total numbers are 5 and total modifications allowed are 3 . So we modified A[1], which is 3 and decreased it by 6 (as 3 modifications are allowed). Now final sum will be $\begin{aligned} & (2 * 3)+(-3 * 4)+(4 * 2)+(5 * 3)+(4 * 2) \\ & 6-12+8+15+8 \\ & 25 \end{aligned}$ 25 is final answer.
12.	Consecutive Prime Sum

	third largest factor is 4. The output must be 4
14.	Coins Distribution Question (or Coins Required Question) Problem Description Find the minimum number of coins required to form any value between 1 to N , both inclusive. Cumulative value of coins should not exceed N . Coin denominations are 1 Rupee, 2 Rupee and 5 Rupee. Let's understand the problem using the following example. Consider the value of N is 13, then the minimum number of coins required to formulate any value between 1 and 13 , is 6 . One 5 Rupee, three 2 Rupee and two 1 Rupee coins are required to realize any value between 1 and 13 . Hence this is the answer. However, if one takes two 5 Rupee coins, one 2 rupee coins and two 1 rupee coins, then to all values between 1 and 13 are achieved. But since the cumulative value of all coins equals 14 , i.e., exceeds 13 , this is not the answer. Input Format A single integer value Output Format Four Space separated Integer Values 1st - Total Number of coins 2nd - number of 5 Rupee coins. 3rd - number of 2 Rupee coins. 4th - number of 1 Rupee coins. Constraints $0<\mathrm{n}<1000$ Sample Input: 13 Sample Output: 6132
S. NO.	Debugging Experiments
1.	Write error/output in the following code. ```# abc.py deffunc(n): return n + 10 func('Hello')```
2.	Write the output of the following code. if not a or b: print 1 elif not a or not b and c :

	print 2 elif not a or b or not b and a : print 3 else: \quad print 4
3.	Write error/output in the following code. ```count = 1 defdoThis(): global count for i in (1, 2, 3): count += 1 doThis() print count```
4.	```Write the output of the following code. check1 = ['Learn', 'Quiz', 'Practice', 'Contribute'] check2 = check1 check3 = check1[:] check2[0] = 'Code' check3[1] = 'Mcq' count \(=0\) for c in (check1, check2, check3): if \(c[0]==\) 'Code': count += 1 if \(c[1]==\) 'Mcq': count \(+=10\) print count```
5.	What is the output of the following program? $\begin{aligned} & \mathrm{D}=\operatorname{dict}() \\ & \text { for } \mathrm{x} \text { in enumerate }(\text { range }(2)) \text { : } \\ & \mathrm{D}[\mathrm{x}[0]]=\mathrm{x}[1] \\ & \mathrm{D}[\mathrm{x}[1]+7]=\mathrm{x}[0] \end{aligned}$

	print(D)
6.	What is the output/error in the following program? $\begin{aligned} & \mathrm{D}=\left\{1: 1,2: \text { '2', '1' }^{\prime}: 1,{ }^{\prime} 2^{\prime}: 3\right\} \\ & \mathrm{D}\left[11^{\prime}\right]=2 \\ & \operatorname{print(D[D[D[\operatorname {str}(\mathrm {D}[1])]]])} \end{aligned}$
7.	What is the output/error in the following program? $\begin{aligned} & \mathrm{D}=\{1:\{\mathrm{A} \text { ' : }\{1: \text { "A" }\}, 2: \text { "B" }\}, 3: " \mathrm{C} ", \text { 'B' : "D", "D": 'E'\} } \\ & \operatorname{print(D[D[D[1][2]]],~end~=~"~")~} \\ & \operatorname{print(D[D[1]["A"][2]])~} \end{aligned}$
8.	What is the output/error in the following program? ```D = dict() for i in range (3): for j in range(2): D[i] = j print(D)```
9.	What is the output/error in the following program? ```x = ['ab', 'cd'] for i in x: x.append(i.upper()) print(x)```
10.	What is the output/error in the following program? ```i=1 while True: if i%3== 0: break print(i) i + = 1```

Course Code	AASL0151	L T P	Credit
Course Title	Professional Communication Lab	$\mathbf{0} \mathbf{0} 2$	$\mathbf{1}$
Suggested list of Experiment			
Sr. No.	Name of Experiment		
$\mathbf{1}$	Extempore speech\& Jam Sessions (4 hrs)		
$\mathbf{2}$	Group Discussion (4 hrs)		
$\mathbf{3}$	Presentations (Individual and group) (4 hrs)		
$\mathbf{4}$	Listening Practice (2 hrs)		
$\mathbf{5}$	News/ Book Review (Presentation based) (4 hrs)		
Lab Course Outcome:			
At the end of the course students will be able to -			
CO 1	Learn to use English language for communicating ideas.		
CO 2	Develop interpersonal skills and leadership abilities.		
CO 3	Practice their public speaking skills and gain confidence in it.		
CO 4	Realize the importance of analytical listening during communication.		
CO 5	Apply critical thinking skills in interpreting texts and discourses.		

Course Code	AME0151	LT P	Credit
Course Title	Digital Manufacturing Practices	003	1.5
Course objective:			
To imp manufa	To impart knowledge to students about the latest technological developments in manufacturing technology.		
2 To ma manufa	To make the students capable to identify and use primary machine tools for manufacturing of job/product.		
3 Tomak progra	Tomake the students understand constructional features, principle and coding/ programming of CNC machines.		
To explain current and emerging 3D printing technologies in industries.			
5. To imp	To impart fundamental knowledge of Automation and Robotics.		
Pre-requisites: Basic knowledge about materials and their properties			
Course Contents / Syllabus			
UNIT-I	asics of Manufacturing processes		ours
Introduction to workshop layout, engineering materials, mechanical properties of metals, introduction to manufacturing processes, concept of Industry 4.0.			
UNIT-II	Machining processes		ours
Introduction to conventional and CNC machines, machining parameters and primary operations, CNC programming- G\& M Codes			
UNIT-III	dditive manufacturing (3D printing)		Hours
Introduction to additive manufacturing, 3D printing technologies, reverse engineering, introduction to injection moulding.			
UNIT-IV	utomation and Robotics		Hours
Introduction to basics of automation and robotics, classification based on geometry and path movements. PTP motion using robot arm.			
Total hours :14			

Course outcome: After completion of this course students will be able to		
CO 1	Understand various manufacturing process which are applied in the industry.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
CO 2	Demonstrate the construction and working of conventional machine tools and computer controlled machine tools.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
CO 3	Understand the programming techniques of CNC machines and Robotic arms.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
CO 4	Use the different 3D printing techniques.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
Text books		
A course in Workshop technology by B.S. Raghuwanshi, Vol I \& II, Dhanpat Rai \& sons, New Delhi (30\%)		
Industrial automation and Robotics by A.K. Gupta., S K Arora, Laxmi publication (30\%)		
CNC Fundamentals and Programming by P.M Agarwal, V.J Patel, Charotar Publication (25\%)		
Reference Books		
(1) Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.(80\% syllabus)		
(2) Rapid Product Development, Kimura Fumihiko(25\% syllabus)		
(3) CNC Machines by M.Adhitan, B.S Pabla; New age international. (25\% syllabus)		
(4) CAD/CAM, by Groover and Zimmers, Prentice Hall India Ltd(25\% syllabus)		
NPTEL/Youtube /Faculty video links:		
Unit 1	https://youtu.be/b1U9W4iNDiQ , https://youtu.be/QZdY3ZRY9RA, https://youtu.be/KX1 NqNTIqw , https://youtu.be/deAIYwPns6w	
Unit2	https://youtu.be/jF4F8Zr2YO8 , https://youtu.be/bDpfTzV6StA, https://youtu.be/6G3sHym7YSo	
Unit3	https://youtu.be/TZmYTfPfhNE, https://youtu.be/yW4EbCWaJHE	
Unit4	https://youtu.be/K-Zg1-fR9kU , https://youtu.be/xrwz9IxpMJg , https://youtu.be/j8vYCIEnyk0	

B. TECH FIRST YEAR				
'Course Code	AME0151	LTP	Credit	
Course Title	Digital Manufacturing Practices	$\mathbf{0 0 0 3}$	$\mathbf{1 . 5}$	
Suggested list of Experiments (At least 10 experiments to be performed)				
Sr. No.	Name of Experiments			
$\mathbf{1}$	To perform facing, turning, taper turning, knurling, grooving and threading operations as per given drawing on lathe machine.			
$\mathbf{2}$	To prepare a T-Shape and U-shape work piece by filing, sawing, drilling in Fitting shop.			
$\mathbf{3}$	To cast a component using a single piece pattern in foundry shop,			
$\mathbf{4}$	To study the G-M Codes for CNC machine and to perform different machining operations including facing, turning, grooving etc on CNC lathe.			
$\mathbf{5}$	To cut a slot on CNC milling machine as per given drawing.			
$\mathbf{6}$	To make a hole of given diameter on CNC drilling machine.			
$\mathbf{7}$	To study construction and working of FDM 3D printing machine.			
$\mathbf{8}$	To study construction and working of SLA 3D printing machine.			
$\mathbf{9}$	To study the development of drawings using 3D scanner.			
$\mathbf{1 0}$	To make an air tight bottle cap by using injection moulding.			
$\mathbf{1 1}$. To study construction and working of six axis robot (KUKA Sim Pro 3.0.4).			
$\mathbf{1 2}$	Practice on pneumatic control system using single acting cylinder.			

CO 3	Apply the Laplace transform to solve ordinary differential equations	K_{3}
CO 4	Apply the concept of vector calculus to evaluate line, surface and volume integrals.	K_{3}
CO 5	Solve the problems of Proportion \& Partnership, Problem of ages, Allegation \& Mixture, Direction, Blood relation , Simple \& Compound interest	K_{3}
Text books:		
(1) B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing Company		
Ltd..		
(2) B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher.		
Reference Books:		
1. E. Kreyszig, Advance Engineering Mathematics, John Wiley \& Sons.		
2. Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.		
3. Maurice D. Weir, Joel Hass, Frank R.Giordano, Thomas, Calculus, Eleventh Edition, Pearson.		
4. G.B Thomas, R L Finney, Calculus and Analytical Geometry, Ninth Edition Pearson.		
5. James Ward Brown and Ruel V Churchill, Fourier Series and Boundary Value Problems, 8th Edition-Tata McGraw-Hill		
6. D. Poole, Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole.		
7. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.		
8. Charles E Roberts Jr, Ordinary Diffrential Equations, Application, Model and Computing,		
CRC Press T\&F Group.		
9. Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, 6th Edition, Tata		
McGraw-Hill.		

	$\begin{aligned} & \text { https://www.youtube.com/watch?v=gK1Y11UxOhw } \\ & \text { https://www.youtube.com/watch?v=Clwkvn77QrE\&t=10s } \\ & \text { https://www.youtube.com/watch?v=LGxE_yZYigI } \end{aligned}$
Unit 3	https://youtu.be/nmp-5tSp-UY https://youtu.be/6ANT4eD6fII https://youtu.be/c9NibpoQjDk https://www.youtube.com/playlist?list=PLNOGIXC4kCBT8G5pWCrH71hmwaAvwsBY3
Unit 4	https://youtu.be/IwgqKjA6wko https://youtu.be/d4OyeuRTZNA https://youtu.be/j36IJKSJMQk https://youtu.be/DhwMOr16Q9g https://youtu.be/DhwMOr16Q9g https://youtu.be/fsMouTxce A https://youtu.be/yq5olnzDCGc https://youtu.be/2SB3IVCwW1w https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable- functions/line-integrals-vectors/v/line-integra https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable- functions $/ 3 \mathrm{~d}$-flux/v/vector-representation-of-a-su http://nucinkis-lab.cc.ic.ac.uk/HELM/workbooks/workbook_29/29_2_surfac https://www.youtube.com/watch?v=Mb6Yb-SGqio https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/stokes-theorem/v/stokes-theorem-intuition https://www.youtube.com/watch?v=eSqznPrtzS4
Unit 5	https://www.GovernmentAdda.com

B. TECH FIRST YEAR					
Course Code	AAS0202	L	T	P	Credit
Course Title	Engineering Chemistry	3	1	0	
Course objective:	4				
1	The course let students gain knowledge on existing and future fuels and their calorific values				
2	The course explains the major water problems and their treatment. Applications of Phase Rule in heterogeneous system.				
3	The course provides basic concepts of Electrochemistry and Cements. It also provides basic knowledge about corrosion and their prevention methods.				
4	The course relies on elementary preparation and application of polymers and future polymers. Applications of Organometallic compounds.				
5	The course intends to provide an overview of Molecular orbital theory and basic concepts of spectroscopic techniques.				
Pre-requisites:					

Course Contents / Syllabus		
UNIT-I	FUEL \& CHEMISTRY IN DAILY LIFE	9 hours

Fuels: Characteristics of Good Fuel, Classification of fuels, Calorific Values (HCV \& LCV and their relationship), Determination of Calorific values (bomb calorimeter \& Dulong's method), Analysis of Coal, Biogas : Composition and its application, Introduction of Bharat Stage Emission Standard (BSES)System. Lubricants- Classification, mechanism, and applications Chemistry in daily life: Hand sanitizers, surface sanitizers, Way to know content \& composition of daily needs.

UNIT-II	WATER CHEMISTRY AND PHASE RULE	9 hours

Potable Water, Hardness of water: Causes, types of hardness, Disadvantage of hard water, expression of hardness - Units, CaCO_{3} Equivalence concept, Boiler Feed Water, Boiler trouble, Calgon Conditioning, Techniques for water softening: Lime-Soda, Zeolite, Ion- exchange resin, Reverse Osmosis (RO). Comparison between traditional water filters and RO.
Phase Rule and its application to Water System.

UNIT-III	ELECTROCHEMISTRY AND SOLID CHEMISTRY	9 hours

Electrochemistry: Galvanic cell, Electrode Potential, Lead storage battery, $\mathrm{H}_{2}-\mathrm{O}_{2}$ Fuel Cell, Concept of lithium ion batteries and its application, chemical concepts of air bags in automobiles. Metallic Corrosion: causes and its Prevention.
Band theory of solids. Liquid crystals and its applications.

UNIT-IV	POLYMERS AND THEIR APPLICATIONS	9 hours

Polymers: Basic concepts of polymer- Blends and composites. Conducting and Biodegradable Polymers, Preparations and applications of some industrially important Polymers: Thermosetting Polymers (Bakelite, Melamine: Urea-Formaldehyde Resins), Elastomers (Natural rubber and its vulcanization, Buna N, Buna S, Neoprene), synthetic Fibers (Nylon6, Nylon 6,6, Terylene).

UNIT-V	SPECTROSCOPIC TECHNIQUE AND ADVANCE METERIALS	9 hours
Point defects in Crystals. Structure, applications of Fullerenes, Semiconductor Materials, Basic Concept of Smart materials, Concepts of Nano-Materials and its applications. Elementary ideas and simple applications of UV- Visible, IR and Raman spectral Techniques		
Course outcome:		
CO 1	Understand the concept of fuel, their calorific value and it's usage	
CO 2	Develop the understanding to apply the principles of water che treatment	he water
CO 3	Apply concepts of Electrochemistry, corrosion and their prevention manufacturing	h cement
CO 4	Understand elementary preparation and application of polymers compounds.	ometallic
CO 5	Understand Molecular orbital theory and simplified concepts of spe	hniques
Text books		
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \end{aligned}$	Chemistry for Engineers, by S. Vairam and Suba Ram Engineering Chemistry by Sunita rattan; Ketson Public Engineering Chemistry, by E.R. Nagarajan; Wiley Ind Concise Inorganic Chemistry by J.D. Lee; Wiley India	India
Reference Books		
1. Textbook of Engineering Chemistry by Dr. Gopal Krishna Bhatt, Acme Publishers		
2. Chemistry (9th ed), by Raymond Chang, Tata McGraw-Hill		
3. Chemistry Concepts and Applications by Steven S. Zumdahl; Cengage Learning		
4. Engineering Chemistry Author: Abhijit Mallick, Viva Books		
5. Text Book of Engineering Chemistry by Harsh Malhotra; Sonali Publications		
6. Organic Chemistry (6 ed) by Morrison \& Boyd; Pearson Education		
7. Physical Chemistry by Gordon M. Barrow; Mc-Graw Hill		
8. Organic Chemistry, Volume 1 (6 ed)\& 2 (5ed) by I. L. Finar; Pearson Education		
9. Atkins' Physical Chemistry by Peter Atkins \& Julio De Paula; Oxford University Press		

break and continue statements, nested loop.
Pre-processor directives: defining and calling macros, file inclusion, conditional compilation.
Pointers: defining and declaring pointer, pointer arithmetic and scaling, Pointer Aliasing.

UNIT-IV	Functions and Arrays	$\mathbf{8}$ hours

Functions: Concept of Sub-programming, function, types of functions, passing parameters to functions: call by value, call by reference, recursive functions, scope of variable, local and global variables, Nesting of Scope, Storage classes: Auto, Register, Static and Extern Arrays: Array notation and representation (one and two dimensional), array using pointers, manipulating array elements, 2-d arrays used in matrix computation. Strings and C string library, Structure, union, Array of structures, Self-referential structures, passing arrays and structure as arguments
Searching techniques (Linear, Binary Search), Sorting Algorithms (Bubble, Insertion and Selection)
Introduction to dynamic memory allocation (malloc(), calloc(), realloc(), free())

UNIT-V	File handling and Introduction to Embedded Programming	$\mathbf{8}$ hours

File handling: File Pointer, File I/O functions and modes, Input and Output using file pointers, Character Input and Output with Files.
Introduction to Embedded Programming: Embedded systems, Introduction to 8051microcontrolller, Installing the Keil software and loading the project, Configuring the simulator, Building the target, Running the simulation, Dissecting the program.
Case Study: Intruder Alarm System.
Course outcome: At the end of course, the student will be able to

CO 1	Develop simple algorithms for arithmetic and logical problems.	K_{2}
CO 2	Implement and trace the execution of programs written in C language.	$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{4}$
CO 3	Implement conditional branching and iteration	K_{3}
CO 4	Use function, arrays and structures to develop algorithms and programs.	$\mathrm{K}_{2}, \mathrm{~K}_{6}$
CO 5	Use searching and sorting algorithm to arrange data and use file handling for developing real life projects	$\mathrm{K}_{2}, \mathrm{~K}_{4}$
Textbooks:		
(1) Herbert Schildt, "C: The Complete Reference", OsbourneMcGraw Hill, 4th Edition, 2002.		
(2) E Balaguruswami, "Computer Concepts and Programming in C", McGraw Hill, 2010.		
(3) Michael J. Pont, "Embedded C", Addison-wesley Pearson Education, 2002.		
Reference Books:		

(1) The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.
(2) Yashwant P. Kanetkar"Let Us C", BPB publication, 2017.
(3) Computer Basics and C Programming by V. Rajaraman, PHI Learning pvt. Limited, 2015.
(4) Yashwant P. Kanetkar, "Working with C", BPB publication, 2003.

E-Book Links:

(1) https://en.wikibooks.org/wiki/C Programming
(2) https://en.wikibooks.org/wiki/A_Little_C_Primer
(3) https://www.goodreads.com/book/show/6968572-ansi-c-programming
(4)https://www.pdffiller.com/347652461-projects-in-c-by-yashwant-kanetkar-pdfpdf-c-projects-yashwant-kanetkar-pdf-form-
(5)http://www.freebookcentre.net/programming-books-download/Lecture-Notes-On-C-Programming-by-L.-V.-Narasimha-Prasad-and-E.-Krishnarao-Patro.html

Reference Links:

(1) https://nptel.ac.in/courses/106/104/106104128/
(2)https://nptel.ac.in/courses/106/104/106104074/
(3)https://nptel.ac.in/courses/106/102/106102066/
(4)https://nptel.ac.in/courses/106/105/106105171/
(5)https://www.youtube.com/watch?v=IdXrCPzNnkU\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=4
(6)https://www.youtube.com/watch?v=L2oataK7F10\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=11
(7)https://www.youtube.com/watch?v=K538VFFmFGc\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=14
(8)https://www.youtube.com/watch?v=HyDpW7A16_E\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=15
(9)https://www.youtube.com/watch?v=0g82dDC-mtc\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=17
(10)https://www.youtube.com/watch?v=d1EHD8RoLDQ\&list=PLJ5C_6qdAvBFzL9su5J-

FX8x80BMhkPy1\&index=19
(11)https://www.youtube.com/watch?v=5xJ1GXTa7IU\&list=PLJ5C_6qdAvBFzL9su5J- FX8x80BMhkPy1\&index=21
(12)https://www.youtube.com/watch?v=19828WOCEMg\&list=PLJ5C_6qdAvBFzL9su5J- FX8x80BMhkPy1\&index=26
(13)https://www.youtube.com/watch?v=V7AZuMuJmXY\&list=PLJ5C_6qdAvBFzL9su5J- FX8x80BMhkPy1\&index=32
(14)https://www.youtube.com/watch?v=AJvCmpt1UU8\&list=PLJ5C_6qdAvBFzL9su5J- FX8x80BMhkPy1\&index=37
(15)https://www.youtube.com/watch?v=1iwmwEJhcMw\&list=PLJ5C_6qdAvBFzL9su5J- FX8x80BMhkPy1\&index=39
(16)https://www.youtube.com/watch?v=K4qXMLItABI\&list=PLJ5C_6qdAvBFzL9su5J- FX8x80BMhkPy1\&index=45
(17)https://www.youtube.com/watch?v=LoIe 9cTtPE\&list=PLJ5C 6qdAvBFzL9su5J- FX8x80BMhkPy1\&index=53
(18)https://www.youtube.com/watch?v=kDDd7AmXq1w\&list=PLJ5C 6qdAvBFzL9su5J- FX8x80BMhkPy1\&index=55
(19)https://www.youtube.com/watch?v=Z_0xXmOgYtY\&list=PLJ5C_6qdAvBFzL9su5J- FX8x80BMhkPyl\&index=58
(20)https://www.youtube.com/watch?v=u60YRSB2isQ\&list=PLJ5C 6qdAvBFzL9su5J- FX8x80BMhkPy1\&index=61

	rectification, Clippers, Breakdown Mechanism: Zener and Avalanche, Zener Diode as Shunt Regulator. Display Devices Liquid Crystal Display (LCD), Light Emitting Diode (LED), OrganicLight Emitting Diode (O-LED), 7- segment display.	
UNIT-V	OPERATIONAL AMPLIFIERS Introduction, Op-Amp Basic, Practical Op-Amp Circuits (Inverting Amplifier, Noninverting Amplifier, Summing Amplifier, Integrator, Differentiator). Electronic Instrumentation Digital Multimeter (DMM), Types of sensor, Introduction to IoT and its application.	09
Course outcome: After successful completion of this course students will be able to		
CO 1	y the principle of KVL/KCL and network theorems for analysis of circuit.	
CO 2	yze the steady state behavior of single phase and three phase AC electrical its.	
CO 3	rate and analyze the working principles of a single phase transformer, ency, and components of Power system, Earthing, and energy calculation.	
CO 4	ain the construction, working principle, and application of PN junction , Zener diode and Display devices.	
$\text { CO } 5$	ain the concept of Op-Amp, Digital multimeter, Sensors,IoT and its cations.	
Text books (Atleast3)		
1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill. 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill. 3. C.L. Wadhwa, Basic Electrical Engineering, Pearson Education 4. J.B. Gupta, Basic Electrical Engineering, Kataria\& Sons 5. Robert L. Boylestad / Louis Nashelsky "Electronic Devices and Circuit Theory", Latest Edition, Pearson Education. 6. H S Kalsi, "Electronic Instrumentation", Latest Edition, TMH Publication.		
Reference Books (Atleast 3)		
1. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010. 2. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press. 3. V. D. Toro, "Electrical Engineering Fundamentals", Pearson India. 4. David A. Bell, "Electronic Devices and Circuits",Latest Edition, Oxford University Press. 5. Jacob Millman, C.C. Halkias, Stayabratajit, "Electronic Devices and Circuits", Latest Edition, TMH.		
NPTEL/Youtube/ Faculty Video Link:		
Unit 1	1. https://youtu.be/FjaJEo7knF4 2. https://youtu.be/UsLbB5k9iuY	

	3. 4.	https://youtu.be/1QfNg965OyE
https://youtu.be/wWihXHCOmUc		

B.TECH. FIRST YEAR(Foreign Language)			
Course Code	AASL0202	L T P	Credit
Course Title	French	200	02
Course objective:			
1	An introduction to French language and culture - Students will learn to understand and articulate in day to day, real-life situations.		
2	The course provides a foundation in the four basic skills LSRW (Listening, Speaking, Reading, and Writing) of language learning.		
Pre-requisite: The student should be able to communicate in English.			
Course Contents / Syllabus			
UNIT-I	Introduction to French	7 Hours	
$>$ Basic greetings and introductions $>$ Differences and similarities between English and French alphabets $>$ Recognize and spell simple words and phrases in French $>$ Commonly used nouns and adjectives			
UNIT-II	Vocabulary Building		8 Hours
$>$ Introduce oneself and others $>$ Identify, speak and understand the days of the week/ months/ seasons/colours $>$ Speak and understand simple weather expressions $>$ Understand, ask and answer about date of birth/ important dates and age $>$ Identify, understand and write numbers from 1-60 $>$ Use the masculine and feminine of regular nouns and adjectives (petit/ grand/ blond/ rouge/ sympa)			
UNIT-III	Everyday Common Simple Sentences		7 Hours

B.TECH FIRST YEAR (Foreign Language)					
Course Code	AASL0204			L T P	Credit
Course Title	Japanese			200	02
Course objective:					
1	An introduction to Japanese language and culture. Students will learn to understand and articulate in day to day real-life situations.				
2	The course provides a foundation in the four basic skills LSRW (Listening, Speaking, Reading, and Writing) of language learning.				
Pre-requisites: The student should be able to communicate in basic English. The student should be keen to learn the language.					
Course Contents / Syllabus					
UNIT-I		Introductio	to Japanese	8 Hours	
Introduction to Japanese alphabet (Hirangana), phonetics and pronunciation. - Introducing ourselves and others, - Introduction to Japanese Language - Types of Japanese scripts- HIRANGANA, KATAKANA, - Basic pronunciation rules - Time and numbers - telling and asking the time, counting cardinal numbers, - Grammar - different types of verbs, nouns - number \& gender, pronouns, present and simple past tense.					
UNIT-II		Vocabular	uilding		8 Hours
- Expressing gratitude - Invitations - Talking about plans - Holidays - Hotels \& restaurants - Town \& country		sic personal negative	estions		
UNIT-III		Everyday	common	simple	8 Hours

B. TECH FIRST YEAR				
Course	Code	AAS0252	LT P	Credit
Course	Title	Engineering Chemistry Lab	002	1
Suggested list of Experiment				
Sr. No.	Name of Experiment			
1	Determination of alkalinity in the given water sample.			
2	Determination of temporary and permanent hardness in water sample using EDTA.			
3	Determination of available chlorine in bleaching powder.			
4	Determination of chloride content in water sample by Mohr's method.			
5	Determination of iron content in the given solution.			
6	Verification of Beers Law using colored complex solution.			
7	Standardization of an alkali solution through an standard acid by pH -metric titration			
8	Viscosity of an addition polymer like polyester by viscometer.			
9	Determination of iron concentration in sample of water by Colorimetric Method			
10	Determination of Flash Point of given fuel sample.			
11	Preparation of Bakelite and Urea formaldehyde resin.			
12	Determination of Hardness by conductivity method.			
Lab Course Outcome: After completion of this course the student will be able to:				
CO 1	Use different analytical instruments.			
CO 2	Calculate molecular/system properties such as surface tension, viscosity, conductance of solution, chloride and iron content in water			

CO 3	Calculate flash point of fuel and lubricants
CO 4	Estimate the rate constant of reaction.
Link:	$\underline{\text { https://nptel.ac.in/courses/103/105/103105110/ }}$
Unit 1	$\underline{\text { http://ecoursesonline.iasri.res.in/mod/page/view.php?id=124279 }}$
Unit 2	$\underline{\text { https://nptel.ac.in/courses/122/101/122101001/ }}$
Unit 3	$\underline{\text { https://nptel.ac.ac.in/courses/113/105/113105028/ }}$
Unit 4	$\underline{\underline{\text { https:://unacademy.com/lesson/molecular-orbital-theory-course- }}}$overview/8INM3NUR
Unit 5	

$\mathbf{1 6 .}$	WAP to swap the values of two numbers using the call by pointer.
$\mathbf{1 7 .}$	WAP to compute the factorial of the number using the recursive function factorial ().
$\mathbf{1 8 .}$	WAP to compute the length of the string using the user defined function xstrlen().
$\mathbf{1 9 .}$	WAP to concatenate two strings using the user defined function xstrcat().
	Strings and Structures
$\mathbf{2 0 .}$	WAP to reverse the string. Also check whether the given string is in palindrome or not.
$\mathbf{2 1 .}$	WAP to create structure of a student having member name, roll number, age, marks. Also, create an array of structure of 50 students and display the detail of all the students having marks more than 70.
$\mathbf{2 2 .}$	File Handling
$\mathbf{2 3 .}$	WAP to copy the contents of one file onto another file. not.
$\mathbf{2 4 .}$	WAP to check whether the given word exist in a file or not. If yes, then find the number of times it occurs.
$\mathbf{2 5 .}$	Dynamic Memory Allocation
$\mathbf{2 6 .}$	Ins to create an array using dynamic memory allocation.
$\mathbf{2 7 .}$	Implement Intruder alarm system.

CO 2	Draw and develop the projections of points lines and planes.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
CO 3	Draw orthographic projection of solids and their sections and draw the lateral surfaces.	K_{3}
CO 4	Apply CAD software to draw 2D and 3D drawing.	K_{2}
CO 5	Apply CREO software to draw 2D and 3D drawing.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$

Text books

A Textbook of Engineering Drawing- Dr R.K. Dhawan, S.Chand Publication, Revised edition-2015
Engineering Graphics and Design- P.S. Gill, Katson books, Revised edition-2018

Reference Books

(1) Engineering Drawing - N.D. Bhatt \& V.M. Panchal, 48thedition, 2005- Charotar Publishing House, Gujarat.
(2) Computer Aided Engineering Drawing - S. Trymbaka Murthy, - I.K. International Publishing House Pvt. Ltd., New Delhi, 3 rdrevised edition-2006

Video links

Unit 1

https://www.youtube.com/watch?v=uojN7SOHPBw
https://youtu.be/w2-a EzO4-Q
https://www.youtube.com/watch?v=n9iQcttWHAo
Unit 2
https://www.youtube.com/watch?v=fK4h5gM73w8\&list=PLIhUrsYr8yHxEk Jv8yOatnDcr6KYK3j https://www.youtube.com/watch?v=FtugLo9DMw8\&list=PLIhUrsYr8yHz_FkG5tGWXaNbIxVcibQvV https://www.youtube.com/watch?v=AoNIOxnxDO0\&list=PLIhUrsYr8yHx7TVB51jN3HZVyW3R6RiBg Unit 3
https://www.youtube.com/watch?v=YV4RZNQ2yB8\&list=PLIhUrsYr8yHxARPzEFz1nXgt8j6xF_tEm https://www.youtube.com/watch?v=vlYAGkWmiW8\&list=PLIhUrsYr8yHwdB96ft6c0Uwc4SDCLuG1v\& index=5
https://www.youtube.com/watch?v=Vo9LC9d7FQA\&list=PLIhUrsYr8yHxVky7bfrnbRcdXcHjT_K83\&in dex=1
youtube.com/watch?v=t9gepMkey0w\&list=PLItCiRV7ABU4SUL7gYOSiwmMIN1t_-gQl\&index=2
Unit 4
https://www.youtube.com/watch?v=ifM0JQ6-Nus
https://www.youtube.com/watch?v=tHrfxjgFQt8
https://www.youtube.com/watch?v=c1kGuiYEHh0
https://www.youtube.com/watch?v=UKpCFYWK7q4\&t=14s
https://www.youtube.com/watch?v=R8Hd7DUZcF0
https://www.youtube.com/watch?v=rzXWDgfcxec
https://www.youtube.com/watch? v=QnN8A1mIUYY
https://www.youtube.com/watch?v=Gx3yy51KumA
https://www.youtube.com/watch?v=tnylweRokkw

Unit 5

https://www.youtube.com/watch?v=sVWsUS_7V6s
https://www.youtube.com/watch?v=KsMil9ND5E8
https://www.youtube.com/watch?v=GGxmUWBoqcg

B. TECH FIRST YEAR					
Course Code		AME0252		L T P	Credit
Course Title		Engineering Graphics \& Solid Modelling		$\begin{array}{llll}0 & 0 & \end{array}$	1.5
Suggested list of Experiment					
Sheet No.	Experiment No.		Name of Experiment		
1.	1		To draw plain scale and diagonal scale.		
2.	1		To draw projection of points, lines and planes.		
3.	1		To draw orthographic projection of regular solids.		
	2		To draw section of regular solids.		
4.	1		To draw development of lateral surfaces of simple solids.		
	2		To draw cycloidal or involute curve.		
5.	1		Initiating the Graphics Package; Setting the paper size, space; setting the limits, units; use of snap and grid commands in AutoCAD		
6.	1		To create 2D view of a center pin with given dimensions in AutoCAD.		
	2		To create 2D view of abase plate with given dimensions in AutoCAD.		
	3		To create 2D view of a bush with given dimensions in AutoCAD.		
7.	1		To create 3D view of a washer in AutoCAD.		
	2		To create 3D view of a guide pin in AutoCAD.		
	3		To create 3D view of a lock nut in AutoCAD.		
8.	1		To create drawings of given machine components in AutoCAD.		
9.	1		To understand basic of CREO		
	2		To understand basic sketching in CREO		
10.	1		To understand basic par modelling in CREO using different options aiding constructions like extrude, hole, ribs, shell etc.		
11.	1		Introduction to CREO Parametric 'sketch features' (revolve, sweep, helical sweep, sweep blend etc.		
12.	1		Introduction to CREO Parametric 'edit features' (group, copy, mirror tool) and 'place features' (holes, shells and drafts).		

[^0]: * AICTE Guidelines in Model Curriculum:

 A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

 1. For 6 to 12 Hours $=0.5$ Credit
 2. For 13 to $18 \quad=1$ Credit
 3. For 19 to $24 \quad=1.5$ Credit
 4. For 25 to $30=2$ Credit
 5. For 31 to $35 \quad=2.5$ Credit
 6. For 36 to $41=3$ Credit
 7. For 42 to $47 \quad=3.5$ Credit
 8. For 48 and above $=4$ Credit

 For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.
 The students shall be awarded Honours Degree as per following criterion.
 i. If he / she secures 7.50 as above CGPA.
 ii. Passed each subject of that degree program in the single attempt without any grace.
 iii. Successful completion of MOOCs based 20 credits.

