NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme & Syllabus

For

B. Tech in Electronics & Communication Engineering (ECE) First Year

(Effective from the Session: 2021-22)

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA (An Autonomous Institute)

B. TECH (ECE)

Evaluation Scheme

SEMESTER I

Sl.	Subject	;	Subject	P	erio	ds	Evaluation Scheme		En Seme		Total	Credit		
No.	. Codes		Ü	L	T	P	CT	TA	TOTAL	PS	TE	PE		
			3 WEEKS COMPULS				LSORY INDUCTION PROGRAM							
1	AAS0103	Engir	neering Mathematics-I	3	1	0	30	20	50		100		150	4
2	AAS0101C	Engir	neering Physics	3	1	0	30	20	50		100		150	4
3	ACSE0101	Probl	em Solving using Python	3	0	0	30	20	50		100		150	3
4	AASL0101	Profe	Professional Communication		0	0	30	20	50		100		150	2
5	AAS0151C	Engir	neering Physics Lab	0	0	2				25		25	50	1
	ACSE0151		em Solving using Python		•	_							~ 0	
6		Lab		0	0	2				25		25	50	1
7	AASL0151	Profe Lab	ssional Communication	0	0	2				25		25	50	1
8	AME0151	Digita Practi	al Manufacturing ices	0	0	3				25		25	50	1.5
			Cs** (For B.Tech. Hons.											
9		Degre	ee)											
		TOT	AL										800	17.5

**List of MOOCs (Coursera) Based Recommended Courses for First Year (Semester-I) B. Tech Students

S. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	AMC0001	Introduction to Artificial Intelligence (AI)	IBM	9	0.5
2	AMC0004	Python Basics	University of Michigan	36	3

Abbreviation Used:-

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA (An Autonomous Institute)

B. TECH (ECE)

Evaluation Scheme SEMESTER II

Sl.	Subject	Subject	P	erio	ds	E	Evaluation Scheme			End Semester		Credit	
No.	Codes		L	T	P	CT	TA	TOTAL	PS	TE	PE		
1	AAS0203	Engineering Mathematics-II	3	1	0	30	20	50		100		150	4
2	AAS0202	Engineering Chemistry	3	1	0	30	20	50		100		150	4
3	ACSE0201	Programming for Problem Solving using C	3	0	0	30	20	50		100		150	3
4	AEC0201	Basic Electrical and Electronics Engineering.	3	1	0	30	20	50		100		150	4
5		Foreign Language*	2	0	0	30	20	50		50		100	2
6	AAS0252	Engineering Chemistry Lab	0	0	2				25		25	50	1
7	AEC0251	Basic Electrical and Electronics Engineering Lab	0	0	2				25		25	50	1
8	ACSE0251	Programming for Problem Solving using C Lab	0	0	2				25		25	50	1
9	AME0252	Engineering Graphics & Solid Modelling	0	0	3				25		25	50	1.5
10		MOOCs** (For B.Tech. Hons. Degree)											
		TOTAL										900	21.5

*Foreign Language:

- 1. AASL0202 French
- 2. AASL0203 German
- 3. AASL0204 Japanese

**List of MOOCs (Coursera) Based Recommended Courses for First Year (Semester-II) B. Tech Students

S. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	AMC0010	IoT Devices	University of Illinois at Urbana-Champaign	13	1
2	AMC0014	Python Classes and Inheritance	University of Michigan	17	1

PLEASE NOTE:-

• Internship (3-4 weeks) shall be conducted during summer break after II semester and will be assessed during III semester

Abbreviation Used:-

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA (An Autonomous Institute)

B. TECH (ECE)

* AICTE Guidelines in Model Curriculum:

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

1.	For 6 to 12 Hours	=0.5 Credit
2.	For 13 to 18	=1 Credit
3.	For 19 to 24	=1.5 Credit
4.	For 25 to 30	=2 Credit
5.	For 31 to 35	=2.5 Credit
6.	For 36 to 41	=3 Credit
7.	For 42 to 47	=3.5 Credit
8.	For 48 and above	=4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honours Degree as per following criterion.

- i. If he / she secures 7.50 as above CGPA.
- ii. Passed each subject of that degree program in the single attempt without any grace.
- iii. Successful completion of MOOCs based 20 credits.

	B. TECH FIRST	YEAR				
Course Cod	le AAS0103	L P	T		Credit	
Course Titl	e Engineering Mathematics-I	3	1	0	4	
linear algebra students with	ective: The objective of this course is to familia differential calculus-I, differential calculus-II a standard concepts and tools from intermediate to d level of mathematics and applications that they	and multivariable can advanced level that	alculu at will	s. It enal	aims to equi	ip the
Pre-requisi	tes: Knowledge of Mathematics upto 12 th	standard.				
	Course Contents / S	yllabus				
UNIT-I	Matrices				8 h	ours
Rank of mati	rices: Symmetric, Skew-symmetric and Orthogorix using elementary transformations, System Iton Theorem and its application, Eigen values as	of linear equation	ıs, Cl	narac	teristic equ	ation
	non Theorem and its application, Eigen values a	na eigenvectors, D	ragon			
	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz th				8 h	ours
Successive Di tracing: Carte homogeneous	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz thesian and Polar co-ordinates. Partial derivatifunctions.	eorem and its app	licatio	on, A	8 h	our s
Successive Di tracing: Carte homogeneous	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz thesian and Polar co-ordinates. Partial derivati	eorem and its app	licatio	on, A	8 h symptotes, 0 r's Theoren	ours Curve n fo
Successive Di tracing: Carte homogeneous UNIT-III Taylor and M	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz thesian and Polar co-ordinates. Partial derivatifunctions.	eorem and its app ves, Total deriva	lication tive,	on, A Eule	8 h symptotes, 0 r's Theorer 8 h s, Approxim	Ours
Successive Di tracing: Carte homogeneous UNIT-III Taylor and Moferrors. Maximum properties of the successive Di tracing: Carte properties de la companya d	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz the sian and Polar co-ordinates. Partial derivatifunctions. Differential Calculus-II faclaurin's theorems for a function of one a	eorem and its app ves, Total deriva	lication tive,	on, A Eule	8 h symptotes, 0 r's Theorer 8 h s, Approxim	ours Curve n fo
Successive Ditracing: Carte homogeneous UNIT-III Taylor and Moferrors. Maximum Maxim	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz the sian and Polar co-ordinates. Partial derivation functions. Differential Calculus-II faclaurin's theorems for a function of one a ma and Minima offunctions of several variables.	eorem and its app ves, Total derivations and two variables, Lagrange Method	lication tive, Jaco of M	on, A Eule	8 h symptotes, 0 r's Theorer 8 h s, Approximations.	ours Curve n fo
Successive Ditracing: Carte homogeneous UNIT-III Taylor and Moferrors. Maximum Multiple integrates.	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz the sian and Polar co-ordinates. Partial derivation functions. Differential Calculus-II faclaurin's theorems for a function of one a ma and Minima offunctions of several variables. Multivariable Calculus	eorem and its applyes, Total derivation and two variables, Lagrange Method of order of integration	Jaco of M	bians	8 h symptotes, 0 r's Theorer 8 h s, Approximations.	our; Curven fo
Successive Ditracing: Carte homogeneous UNIT-III Taylor and Moferrors. Maximum Multiple integ Change of var (Constant and	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz the sian and Polar co-ordinates. Partial derivation functions. Differential Calculus-II faclaurin's theorems for a function of one a ma and Minima offunctions of several variables. Multivariable Calculus ration: Double integral, Triple integral, Change of iables, Application: Areas and volumes, Centre of variable densities), Improper integrals, Beta & G	nd two variables, Lagrange Method of order of integrate	Jaco of M	bians ultip	8 h symptotes, 0 r's Theorer 8 h s, Approximations. 10 h	ours Curve n fo
Successive Ditracing: Carte homogeneous UNIT-III Taylor and Moferrors. Maxis UNIT-IV Multiple integ Change of var (Constant and integral and its	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz the sian and Polar co-ordinates. Partial derivation functions. Differential Calculus-II faclaurin's theorems for a function of one a ma and Minima offunctions of several variables. Multivariable Calculus ration: Double integral, Triple integral, Change of iables, Application: Areas and volumes, Centre of variable densities), Improper integrals, Beta & G	nd two variables, Lagrange Method of order of integrate	Jaco of M	bians ultip	8 h symptotes, 0 r's Theorer 8 h s, Approxim liers. 10 h	ours Curve n fo ours nation ours
Successive Ditracing: Carte homogeneous UNIT-III Taylor and Moferrors. Maximum Multiple integ Change of var (Constant and integral and its	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz the sian and Polar co-ordinates. Partial derivation functions. Differential Calculus-II factaurin's theorems for a function of one a ma and Minima offunctions of several variables. Multivariable Calculus ration: Double integral, Triple integral, Change of iables, Application: Areas and volumes, Centre of variable densities), Improper integrals, Beta & Gest applications.	nd two variables, Lagrange Method of order of integrate of mass and centre	Jaco of M	bians ultiparope	8 h symptotes, 0 r's Theorer 8 h s, Approximations. 10 h rties, Dirich	ours Ours ours let's
Successive Ditracing: Carte homogeneous UNIT-III Taylor and Moferrors. Maxis UNIT-IV Multiple integ Change of var (Constant and integral and its UNIT-V Simplification	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz the sian and Polar co-ordinates. Partial derivation functions. Differential Calculus-II Maclaurin's theorems for a function of one a ma and Minima offunctions of several variables. Multivariable Calculus ration: Double integral, Triple integral, Change of iables, Application: Areas and volumes, Centre of variable densities), Improper integrals, Beta & Grapplications. Aptitude-I	nd two variables, Lagrange Method of order of integrate of mass and centre fama function and t	Jaco of M	bians ultiparope	8 h symptotes, 0 r's Theorer 8 h s, Approximations. 10 h rties, Dirich	ours Ours ours
Successive Ditracing: Carte homogeneous UNIT-III Taylor and Moferrors. Maxi UNIT-IV Multiple integ Change of var (Constant and integral and its UNIT-V Simplification Course out	Differential Calculus-I fferentiation (nth order derivatives), Leibnitz the sian and Polar co-ordinates. Partial derivation functions. Differential Calculus-II factaurin's theorems for a function of one a ma and Minima offunctions of several variables. Multivariable Calculus ration: Double integral, Triple integral, Change of iables, Application: Areas and volumes, Centre of variable densities), Improper integrals, Beta & Gos applications. Aptitude-I , Percentage, Profit, loss & discount, Average	nd two variables, Lagrange Method of order of integrate of mass and centre fama function and to	Jaco of M	bians ultiparope	8 h symptotes, 0 r's Theorer 8 h s, Approximations. 10 h rties, Dirich	ours Curve n fo ours nation ours

L

	Leibnitz theorems and total derivatives	
CO 3	Apply partial differentiation for evaluating maxima, minima, Taylor's series and Jacobians.	K ₃
CO 4	Apply the concept of multiple integral to find area, volume, centre of mass and centre of gravity.	K ₃
CO 5	Solve the problems of Profit, Loss, Number & Series, Coding & decoding.	K ₃

Text books

- (1) B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw-Hill Publishing Company Ltd..
- (2) B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher.
- (3) R K. Jain & S R K. Iyenger, Advance Engineering Mathematics, Narosa Publishing House.

Reference Books:

- (1) E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons.
- (2) Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.
- (3) Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas, Calculus, Eleventh Edition, Pearson.
- (4) D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole.
- (5) Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- (6) Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill; Sixth Edition.
- (7) P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education Services Pvt. Ltd

- (8) Advanced Engineering Mathematics. Chandrika Prasad, ReenaGarg.
- (9) Engineering Mathemathics I. ReenaGarg.
- (10) Quantitative Aptitude by R.S. Aggrawal.

Link:

Unit 1 https://www.youtube.com/watch?v=kcL5WWJjmIU

https://www.youtube.com/watch?v=VTHz4gjzsKI

https://youtu.be/56dEt9EOZ M

https://www.youtube.com/watch?v=njDiwB43w80

https://www.youtube.com/watch?v=N33SOw1A5fo

https://www.youtube.com/watch?v=yLi8RxqfowA www.math.ku.edu/~lerner/LAnotes/Chapter5.pdf http://www.math.hawaii.edu/~lee/linear/sys-eq.pdf https://youtu.be/41Y38WjHbtE https://www.youtube.com/watch?v=4jcvZmMK_28 https://www.youtube.com/watch?v=G4N8vJpf7hM https://www.youtube.com/watch?v=r5dIXpssvrA https://youtu.be/ZX5YnDMzwbs http://web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf https://www.youtube.com/watch?v=iKQESPLDnnI https://math.okstate.edu/people/binegar/3013-S99/3013-I16.pdf https://www.youtube.com/watch?v=kGdezES-bDU Unit 2 https://www.youtube.com/watch?v=tOxk5IX9S 8&list=PLbu fGT0MPstS3DTIyqkUecSW 7axd xKe https://www.youtube.com/watch?v=U5sGFf0DjLs&t=34s https://www.youtube.com/watch?v=TCPPvRfHtXw https://www.youtube.com/watch?v=PkuPGKSacu0&list=PL2FUpm Ld1Q3H00wVFuwjWOo1gt MXk1eb https://www.youtube.com/watch?v=QeWrQ9Fz3Wo&t=22s https://www.youtube.com/watch?v=5dFrWCE6bHg https://www.youtube.com/watch?v=WX6O9TiFYsA&t=110s https://www.youtube.com/watch?v=GII1ssdR2cg&list=PLhSp9OSVmeyK2yt8hdoo3Oze3O0Y67 qaY Unit 3 https://www.youtube.com/watch?v=6tQTRlbkbc8 https://www.youtube.com/watch?v=McT-UsFx1Es https://www.youtube.com/watch?v= 1TNtFqiFQo https://www.youtube.com/watch?v=X6kp2o3mGtA https://www.youtube.com/watch?v=btLWNJdHzSQ https://www.youtube.com/watch?v=jiEaKYI0ATY

	https://www.youtube.com/watch?v=r6lDwJZmfGA
	https://www.youtube.com/watch?v=Jk9xMY4mPH8
	https://www.youtube.com/watch?v=fqq_UR4zhfI
	https://www.youtube.com/watch?v=G0V_yp0jz5c
	https://www.youtube.com/watch?v=9-tir2V3vYY
	https://www.youtube.com/watch?v=jGwA4hknYp4
Unit 4	https://www.youtube.com/watch?v=3BbrC9JcjOU
	https://www.youtube.com/watch?v=-DduB46CoZY
	https://www.youtube.com/watch?v=VvKAuFBJLs0
	https://www.youtube.com/watch?v=4rc3w1sGoNU
	https://www.youtube.com/watch?v=X6kp2o3mGtA&t=1003s
	https://www.youtube.com/watch?v=wtY5fx6VMGQ&t=1151s
	https://www.youtube.com/watch?v=-I3HUeHi1Ys&t=1933s
	https://www.youtube.com/watch?v=kfv9h3c46CI
	https://www.youtube.com/watch?v=9_m36W3cK74
	https://www.youtube.com/watch?v=HQM7XMd5QQo
	- https://www.GovernmentAdda.com
Unit 5	https://www.GovernmentAdda.com

Course Code		AAS0101C		L	T	P	Credit	
Course Title		Engineering Physics		3	1	0	4	
Course objectiv	ve:		<u> </u>				1	
1	To	provide the knowledge of Relativi	stic Mech	nani	cs and	d		
	thei	r uses to engineering applications.						
2	То	provide the knowledge of Quantum M	Mechanics	and	to			
2		lore possible engineering utilization.	icchaines	anu	ιο			
	СХР	note possible engineering utilization.						
3	To	provide the knowledge of interference	and diffr	acti	on.			
4	То	provide the basic concept of Electrom	nagnetics					
4	10	provide the basic concept of Electron	iagneties.					
5	To	provide the knowledge of Dielectric p	roperties	of				
	mat	terial and to explore possible engineer	ing applic	catio	ns.			

Course Contents / Syllabus

UNIT-I	Relativistic Mechanics	8 hours

Frame of reference, Inertial & non-inertial frames, Galilean transformations, Michelson-Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Velocity addition theorem, Variation of mass with velocity, Einstein's mass energy relation, Relativistic relation between energy and momentum, Massless particle.

Some engineering applications(qualitative): Global positioning system (GPS), Application to Satellites.

UNIT-II	Quantum Mechanics	8 hours

Introduction to wave-particle duality, de Broglie matter waves, Phase and group velocities, Heisenberg's uncertainty principle and its applications, Wave function characteristics and significance, Time-dependent and time- independent Schrödinger's wave equations, Particle in one-dimensional rigid box, Theory of Quantum excitation of the Higgs field (Higgs Boson or GOD particle) (qualitative).

UNIT-III	Wave Optics	10 hours

Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources, Newton's Rings and its applications. Fraunhofer diffraction at single slit and at double slit, absent

spectra, Diffraction grating, grating spectra, Rayleigh's criterion of resolution, Resolving power of grating, Optical filters.

UNIT-IV	Electromagnetic Field Theory	8 hours

Continuity equation for current density, Displacement current, Maxwell's equation in differential and integral form, Energy in an electromagnetic field, Poynting vector and Poynting theorem, Plane electromagnetic waves in vacuum and their transverse nature, Relation between electric and magnetic field of an electromagnetic wave, energy and momentum carried by electromagnetic wave, radiation pressure, Skin depth.

Some engineering applications(qualitative): Electromagnetic signature of UAV (Drone).

UNIT-V	Dielectric Properties of Materials	6 hours

Dielectric constant and polarization of dielectric material, Types of polarization, Polarizability, Equation of internal field in liquid and solids in one dimension, Claussius-Mossotti equation, Frequency dependence of dielectric constant, Dielectric losses (qualitative), Ferro-& Piezo- electricity (qualitative).

Some engineering applications(qualitative): RAM & RFID.

Course outcome: After completion of this course students willbeable to:

CO 1	Solve the relativistic mechanics problems	K1,K2,K3
CO 2	Apply the concept of quantum mechanics	K1,K2,K3
CO 3	Apply the laws of optics and their application in various processes	K1,K2,K3
CO 4	Apply the concept of electromagnetics.	K1,K2,K3
CO 5	Discuss the dielectric properties of material and their possible engineering applications.	K1,K2

Text books

1.	A. Beiser, Concepts of Modern Physics (McGraw Hill)
2.	Brijlal&Subramanian,Optics - (S. Chand)
3	Neerai Mehta Applied Physics for Engineers (PHI Learning New)

Reference Books

- 1. Robert Resnick, Introduction to Special Theory of Relativity (Wiley)
- 2. Katiyar and Pandey, Engineering Physics: Theory and Practical (Wiley India)
- **3.** H. K. Malik and A. K. Singh, Engineering Physics (McGrawHill)
- 4. J.W. Jewett , Jr. and R. A. Serway , Physics for Scientists and Engineers with Modern

Physics,7th Edn. (CENGAGE Learning)
5. C. Kittel, Solid State Physics,7th Edn. (Wiley Eastern)
6. V. Raghavan, Materials Science and Engineering (Prentice Hall, India)
7. S.O. Pillai , Solid State Physics,5th Edn (New Age International)
8. R. Booker and E. Boysen, Nanotechnology (Wiley Publ.)
9. K.Rajagopal, Engineering Physics, 2nd Edn. (PHI Learning)
10. G. Aruldhas, Engineering Physics (PHI Learning)
11. S.D. Jain and G.S. Sahasrabudhe, Engineering Physics (Universities Press)
12. L. F. Bates, Modern Magnetism, (Cambridge Univ. Press)
13. F.T.S.Yu , XY.Yang, Introduction to Optical Engineering (Cambridge Univ.Press)
14. G.Keiser, Optical Communications Essentials (Tata McGrawHill)

Course	Code	ACSE0101	L T P	Credit
Course Title		Problem solving using Python	3 0 0	3
Course	objectiv	e:		
1	To imp	part knowledge of basic building blocks of Py	thon programmi	ng
2	To pro	To provide skills to design algorithms for problem solving		
3	To imp Python	part the knowledge of implementation and del	ougging of basic	programs in
4	To diss	seminate the knowledge of basic data structur	es	
5	To pro	vide the knowledge of file system concepts and	nd its application	in data

Pre-requisites:Students are expected to be able to open command prompt window or terminal window, edit a text file, download and install software, and understand basic programming concepts.

Course Contents / Syllabus

UNIT-I	Basics of python programming	8 hours

Introduction: Introduction to computer system, algorithms, Ethics and IT policy in company, Feature of object-oriented programming, A Brief History of Python, Applications areas of python, The Programming Cycle for Python, Python IDE, Interacting with Python Programs.

Elements of Python:keywords and identifiers, variables, data types and type conversion, operators in python, expressions in python, strings.

UNIT-II	Decision Control Statements	8 hours

Conditionals: Conditional statement in Python (if-else statement, its working and execution),

Nested-if statement and elif statement in Python, Expression Evaluation & Float Representation.

Loops: Purpose and working of loops, while loop, For Loop, Nested Loops, Break and Continue, pass statement.

UNIT-III	Function and Modules	8 hours
Introduction of I	Function, calling a function, Function arguments, built in function	on, scope rules,

Passing function to a function, recursion, Lambda functions

Modules and Packages: Importing Modules, writing own modules, Standard library modules, dir() Function, Packages in Python

UNIT-IV Basic Data structures in Python 8 hours

Strings: Basic operations, IndexingandSlicing of Strings, Comparing strings, Regular expressions.

Python BasicData Structure: Sequence, Unpacking Sequences, Mutable Sequences, Lists, ListComprehension, Looping in lists, Tuples, Sets, Dictionaries

UNIT-V File and Exception handling 8 hours

Files and Directories: Introduction to File Handling in Python, Reading and Writing files, Additional file methods, Working with Directories.

Exception Handling, Errors, Run Time Errors, Handling IO Exception, Try-except statement, Raise, Assert

Searching & Sorting: Simple search & Binary search, Selection Sort, Merge Sort

Course	outcome: At the end of course, the student will be able	to
CO 1	Write simple python programs.	K_2, K_3
CO 2	Develop python programs using decision control statements	K ₃ , K ₆
CO 3	Implement user defined functions and modules in python	K_2
CO 4	Implement python data structures –lists, tuples, set, dictionaries	K ₃
CO 5	Perform input/output operations with files in python and implement searching, sorting and merging algorithms	K ₃ , K ₄

Text books

- (1) Magnus Lie Hetland, "Beginning Python-From Novice to Professional"—Third Edition, Apress
- (2) Python Programming using Problem solving approach by ReemaThareja OXFORD Higher education
- (3) Kenneth A. Lambert, —Fundamentals of Python: First Programs, CENGAGE Learning, 2012.

Reference Books

- (1) John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press , 2013
- (2) Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem Solving Focus, Wiley India Edition, 2013.
- (3) Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016
- (4) Robert Sedgewick, Kevin Wayne, Robert Dondero: Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd.,2016.
- (5) Timothy A. Budd, —Exploring Pythonl, Mc-Graw Hill Education (India) Private Ltd., 2015.
- (6) Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

E-book and E-Content

- (1) https://www.pdfdrive.com/hacking-hacking-practical-guide-for-beginners-hacking-with-pythn-e182434771.html
- (2) https://www.pdfdrive.com/python-programming-python-programming-for-beginners-python-programming-for-intermediates-e180663309.html
- (3) https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e175246184.html
- (4) https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e160968277.html
- (5) https://docs.python.org/3/library/index.html
- (6) https://www.w3schools.com/python/
- (7) https://www.py4e.com/materials

Reference Links

- Unit-1 https://nptel.ac.in/courses/106/106/106106182/
- Unit-2 https://nptel.ac.in/courses/106/106/106106212/
- Unit-3 https://nptel.ac.in/courses/106/106/106106145/

Unit-4- https://nptel.ac.in/courses/106/106/106106145/

Unit-5- https://nptel.ac.in/courses/106/106/106106145/

[Unit-2]- https://www.youtube.com/watch?v=PqFKRqpHrjw

[Unit – 3]- https://www.youtube.com/watch?v=m9n2f9lhtrw

https://www.youtube.com/watch?v=oSPMmeaiQ68

[Unit 4]- https://www.youtube.com/watch?v=ixEeeNjjOJ0&t=4s

[Unit-5]- https://www.youtube.com/watch?v=NMTEjQ8-AJM

After Completing Course Student may get certification in python using following links:

Link for Certification:

https://swayam.gov.in/nd1_noc19_cs41/preview

https://aktu.ict.iitk.ac.in/courses/python-programming-a-practical-approach/

		B.TECH FIRST YEAR		
Cours	se Code	AASL0101	LTP	Credit
Cours	Course Title Professional Communication 2 0 0		2 0 0	02
Cours	se objectiv	ve:	1	1
1	effe	e objective of the course is to ensure that the students ca ectively, in clear and correct English, in a style appropri casion.		
2	Spe	e course provides a foundation in the four basic skills Leaking, Reading, Writing) of language learning, aligned ernational Business English Certification.	, .	
Pre-r	equisites:	-		
•	grammatica All the stud	t should be able to communicate in basic English and all structures of English. ents must take an assessment exam to ascertain their levirely induction course in it.		
		Course Contents / Syllabus		
TINITT			7.11	

UNIT-I	Introduction & Reading Skills	7 Hours

- ➤ Introduction to ESP
- ➤ Reading basics (skimming, scanning, churning, & assimilation)
- ➤ Reading comprehension
- > Reading texts for paraphrasing & note making; diagram, chart, picture reading
- > Critical reading of texts through suggested list of books

UNIT-II Writing Skills 10 Hours

- ➤ Vocabulary building word formation; root words, prefixes &suffixes; synonyms; antonyms; homophones; abbreviations; one-word substitutes
- > Requisites of a good sentence
- > Common errors subject-verb agreement and concord, tenses, articles, preposition; punctuation

Paragraj	ph writing	
Basics of	of letter &email writing; notice & memo writing	
UNIT-III	Listening Skills	5 Hours
Process	of listening	
Types o	of listening	
> Overcor	ming barriers to listening	
Tips for	effective listening	
> Exercise	es on listening skills	
UNIT-IV	Speaking Skills	8 Hours

- > Skills of effective speaking
- ➤ Applied phonetics phoneme, syllable, word accent

- > Stress, rhythm& intonation in English
- ➤ Neutral accent difficulties of non-native speakers of English
- > Speaking with confidence

UNIT-V Public Speaking

10 Hours

- > Components of effective speaking in the workplace
- ➤ Public speaking Kinesics, Chronemics, Proxemics
- ➤ Voice dynamics
- ➤ Basics of Presentation, PPT support
- ➤ Online Presentations & Etiquette
- > Facing an Interview

Course outcome:

At the end of the course students will be able to

CO 1	Understand the basic objective of the course and comprehend texts for professional	
	reading tasks in preparation for an International Certification in Business English.	
CO 2	Write professionally in simple and correct English.	
CO 3	Interpret listening tasks for better professional competence.	
CO 4	Recognize the elements of effective speaking with emphasis on applied phonetics.	
CO 5	Apply the skill of speaking at the workplace.	
I	_	ı

Text books

- 1. Cambridge English Business Benchmark (Pre-intermediate to Intermediate), 2nd edition, Norman Whitby, Cambridge University Press, 2006, UK.
- 2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Delhi.
- 3. Technical Communication Principles and Practices by Meenakshi Raman &Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi.

Reference Books

- 1. Talbot, Fiona. Improve Your Global Business English Kogan Page, 2012.
- 2. Leech Geoffrey. Communicative Grammar of English Pears on Education Harlow, United Kingdom, 1994.
- 3. Sethi J. Course in Phonetics and Spoken EnglishPrentice Hall India Learning Private Limited; 2 edition (1999)
- 4. Rebecca Corfield. *Preparing the Perfect CV*. Kogan Page Publishers, 2009.
- 5. Anderson, Paul V. Technical communication. 8th ed. Cengage Learning, 2011.
- 6. IELTS 11: General Training with answers. Cambridge English

Course Title Engineering Physics Lab O 0 2 1			B. TECH FIRS	ST YEAR			
Suggested list of Experiment No. Name of Experiment (Minimum Ten experiments should be performed) 1 To determine the wavelength of monochromatic light by Newton's ring. 2 To determine the focal length of two lenses by nodal slide and to verify the formula for the focal length of combination of two lenses. 3 To determine the specific rotation of cane sugar solution using Polarimeter. 4 To determine the specific rotation of cane sugar solution using Polarimeter. 5 To determine the specific rotation of cane sugar solution using Polarimeter. 6 To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. 7 To verify Stefan's Law by electrical method. 8 To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. 9 To determine the energy band gap of a given semiconductor material. 10 To determine the coefficient of viscosity of a liquid. 11 Calibration of a voltmeter using potentiometer. 12 Calibration of a ammeter using potentiometer. 13 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. 14 To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. 15 To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the wavelength of laser using diffraction grating. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?y=lzBKIY4FIXA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf n106&	Course	Code	AAS0151C	LTP	Credit		
Sr. Name of Experiment No. (Minimum Ten experiments should be performed) 1 To determine the wavelength of monochromatic light by Newton's ring. 2 To determine the focal length of two lenses by nodal slide and to verify the formula for the focal length of combination of two lenses. 3 To determine the specific rotation of cane sugar solution using Polarimeter. 4 To determine the wavelength of spectral lines using plane transmission Grating. 5 To determine the specific resistance of a given wire using Carey Foster's bridge. 6 To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. 7 To verify Stefan's Law by electrical method. 8 To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. 9 To determine the energy band gap of a given semiconductor material. 10 To determine the coefficient of viscosity of a liquid. 11 Calibration of a voltmeter using potentiometer. 12 Calibration of a voltmeter using potentiometer. 13 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. 14 To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. 15 To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the angle of divergence of laser beam using He-Ne Laser. 18 To determine the apple of divergence of laser using diffraction grating. 18 To determine the apple of divergence of laser using diffraction grating. 19 To determine the apple of divergence of laser using diffraction grating. 10 To determine the mumerical aperture of optical fiber. 11 To determine the mumerical aperture of optical fiber. 12 Lab Course Outcome: After completion of this course students willbeable to: 13 Develop the measurement techniques of magnetism. 14	Course	Title	Engineering Physics Lab	0 0 2	1		
No.			Suggested list of 1	Experiment			
No.	Sr.	Name	of Experiment				
1 To determine the wavelength of monochromatic light by Newton's ring. 2 To determine the focal length of two lenses by nodal slide and to verify the formula for the focal length of combination of two lenses. 3 To determine the specific rotation of cane sugar solution using Polarimeter. 4 To determine the wavelength of spectral lines using plane transmission Grating. 5 To determine the specific resistance of a given wire using Carey Foster's bridge. 6 To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. 7 To verify Stefan's Law by electrical method. 8 To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. 9 To determine the energy band gap of a given semiconductor material. 10 To determine the coefficient of viscosity of a liquid. 11 Calibration of a voltmeter using potentiometer. 12 Calibration of a voltmeter using potentiometer. 13 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. 14 To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. 15 To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the male of divergence of laser beam using He-Ne Laser. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n106&index=11	No.						
focal length of combination of two lenses. 3 To determine the specific rotation of cane sugar solution using Polarimeter. 4 To determine the wavelength of spectral lines using plane transmission Grating. 5 To determine the specific resistance of a given wire using Carey Foster's bridge. 6 To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. 7 To verify Stefan's Law by electrical method. 8 To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. 9 To determine the energy band gap of a given semiconductor material. 10 To determine the coefficient of viscosity of a liquid. 11 Calibration of a voltmeter using potentiometer. 12 Calibration of a ammeter using potentiometer. 13 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. 14 To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. 15 To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the wavelength of laser using diffraction grating. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n106&index=11	1						
To determine the specific rotation of cane sugar solution using Polarimeter. To determine the wavelength of spectral lines using plane transmission Grating. To determine the specific resistance of a given wire using Carey Foster's bridge. To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. To verify Stefan's Law by electrical method. To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. To determine the energy band gap of a given semiconductor material. To determine the coefficient of viscosity of a liquid. Calibration of a voltmeter using potentiometer. Calibration of a ammeter using potentiometer. To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf n106&index=11	2	To dete	ermine the focal length of two lenses	by nodal slide and to verify t	he formula for the		
To determine the wavelength of spectral lines using plane transmission Grating. To determine the specific resistance of a given wire using Carey Foster's bridge. To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. To verify Stefan's Law by electrical method. To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. To determine the energy band gap of a given semiconductor material. Calibration of a voltmeter using potentiometer. Calibration of a ammeter using potentiometer. To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&dist=PL10WTjZXSIIHKMnU4UCxpPsH-yAf n106&index=11		focal le	ength of combination of two lenses.				
To determine the specific resistance of a given wire using Carey Foster's bridge. To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. To verify Stefan's Law by electrical method. To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. To determine the energy band gap of a given semiconductor material. To determine the coefficient of viscosity of a liquid. Calibration of a voltmeter using potentiometer. Calibration of a ammeter using potentiometer. To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the wavelength of laser using diffraction grating. To determine the unmerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf n106&index=11	3	To dete	ermine the specific rotation of cane suga	ar solution using Polarimeter.			
To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. To verify Stefan's Law by electrical method. To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. To determine the energy band gap of a given semiconductor material. Calibration of a voltmeter using potentiometer. Calibration of a ammeter using potentiometer. To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the wavelength of laser using diffraction grating. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKlY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11	4	To dete	ermine the wavelength of spectral lines	using plane transmission Grati	ng.		
then to estimate the radius of the coil. 7 To verify Stefan's Law by electrical method. 8 To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. 9 To determine the energy band gap of a given semiconductor material. 10 To determine the coefficient of viscosity of a liquid. 11 Calibration of a voltmeter using potentiometer. 12 Calibration of a ammeter using potentiometer. 13 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. 14 To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. 15 To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the wavelength of laser using diffraction grating. 18 To determine the wavelength of laser using diffraction grating. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11	5	To dete	ermine the specific resistance of a given	wire using Carey Foster's brid	lge.		
To verify Stefan's Law by electrical method. To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. To determine the energy band gap of a given semiconductor material. To determine the coefficient of viscosity of a liquid. Calibration of a voltmeter using potentiometer. Calibration of a ammeter using potentiometer. To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKlY4f1XA&list=PL10WTjZXSliHKMnU4UCxpPsH-yAf n106&index=11	6		-	g the axis of current carrying	- Circular coil and		
To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. To determine the energy band gap of a given semiconductor material. To determine the coefficient of viscosity of a liquid. Calibration of a voltmeter using potentiometer. Calibration of a ammeter using potentiometer. To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n106&index=11		then to	estimate the radius of the coil.				
given semiconductor material using hall effect setup. 9 To determine the energy band gap of a given semiconductor material. 10 To determine the coefficient of viscosity of a liquid. 11 Calibration of a voltmeter using potentiometer. 12 Calibration of a ammeter using potentiometer. 13 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. 14 To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. 15 To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the wavelength of laser using diffraction grating. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n106&index=11	7						
To determine the energy band gap of a given semiconductor material. To determine the coefficient of viscosity of a liquid. Calibration of a voltmeter using potentiometer. Calibration of a ammeter using potentiometer. To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n106&index=11	8			•	and mobility of a		
10 To determine the coefficient of viscosity of a liquid. 11 Calibration of a voltmeter using potentiometer. 12 Calibration of a ammeter using potentiometer. 13 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. 14 To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. 15 To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the wavelength of laser using diffraction grating. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11							
11 Calibration of a voltmeter using potentiometer. 12 Calibration of a ammeter using potentiometer. 13 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. 14 To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. 15 To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the wavelength of laser using diffraction grating. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n106&index=11							
12 Calibration of a ammeter using potentiometer. 13 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. 14 To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. 15 To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the wavelength of laser using diffraction grating. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf n1O6&index=11							
To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11							
To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n106&index=11				***			
tube method. To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKlY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n106&index=11				_	. 0:11		
To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the wavelength of laser using diffraction grating. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKlY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf n106&index=11	14			a ferromagnetic salt (FeCl ₃) t	by using Quincke's		
ferromagnetic material. 16 To determine the angle of divergence of laser beam using He-Ne Laser. 17 To determine the wavelength of laser using diffraction grating. 18 To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf n1O6&index=11	15			timests the metanticular and so			
To determine the angle of divergence of laser beam using He-Ne Laser. To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11	15			stimate the retentively and coo	ercivity of a given		
To determine the wavelength of laser using diffraction grating. To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n106&index=11	16			hoom using Uo No Losor			
To determine the numerical aperture of optical fiber. Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKlY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11			<u> </u>				
Lab Course Outcome: After completion of this course students willbeable to: CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKlY4f1XA&list=PL10WTjZXSIlHKMnU4UCxpPsH-yAf_n1O6&index=11							
CO 1 Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKlY4f1XA&list=PL10WTjZXSIlHKMnU4UCxpPsH-yAf_n1O6&index=11					e to:		
CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11	Lab	ourse o	ducome. After completion of uns	s course students willocaur	C 10.		
CO 2 Understand energy band gap and resistivity. CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11	CO 1	Apply t	the practical knowledge of the phenome	enon of interference, diffraction	n and polarization.		
CO 3 Develop the measurement techniques of magnetism. CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKlY4f1XA&list=PL10WTjZXSIlHKMnU4UCxpPsH-yAf_n1O6&index=11		111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
CO 4 Analyze the flow of liquids. Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11							
Link: Unit 1 https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIlHKMnU4UCxpPsH-yAf_n1O6&index=11							
yAf_n1O6&index=11	Link:	1 -	•				
yAf_n1O6&index=11	Unit 1	https://v	www.youtube.com/watch?v=lzBKlY4f1XA	A&list=PL10WTjZXSIIHKMnU4	UCxpPsH-		
Unit 2 http://nptel.ac.in/ , http://nptel.ac.in/ , http://www.mit.edu/		_	-				
	Unit 2	http://np	ptel.ac.in/, http://www.mit.edu/				

Unit 3	https://www.youtube.com/watch?v=bWTxf5dSUBE,http://ocw.mit.edu/
	http://nptel.ac.in/
Unit 4	https://www.youtube.com/watch?v=6vyYRnLvnqI
Unit 5	https://www.youtube.com/watch?v=0GD-18Jqnro,
	https://www.youtube.com/watch?v=dQhhcgn8YZo

		B.TECH FIRST YEAR		
Lab Code		ACSE0151 L T P		Credit
Lab T	itle	Problem Solving using Python Lab	0 0 2	1
Course	outco	ome: At the end of course, the student will	be able to	
CO 1	Write simple python programs.			K ₂ , K ₃
CO 2	Implement python programs using decision control statements K			K ₃ , K ₆
CO 3 Writing python programs using user defined functions and modules K ₂		K ₂		
CO 4 Implement programs using python data structures –lists, tuples, set, dictionaries		K ₃		
CO 5 Write programs to perform input/output operations on files		K ₃ , K ₄		

List of Experiment:

	List of Fundamental Programs	
S.N.	Program Title	Catagory
1	Python Program to print "Hello Python"	Basic
2	Python Program to read and print values of variables of different data types.	Basic
3	Python Program to perform arithmetic operations on two integer numbers	Basic
4	Python Program to Swap two numbers	Basic
5	Python Program to convert degree Fahrenheit into degree Celsius	Operators
6	Python Program to demonstrate the use of relational operators.	Operators
7	Python Program to understand the working of bitwise and logical operators.	Operators
8	Python Program to calculate roots of a quadratic equation.	Conditional
9	Python Program to check whether a year is leap year or not.	Conditional
10	Python Program to find smallest number among three numbers.	Conditional
11	Python Program to make a simple calculator.	Conditional
12	Python Program to find the factorial of an integer number.	Loop
13	Python Program to find the reverse of an integer number.	Loop
14	Python Program to find and print all prime numbers in a list.	Loop
15	Python Program to Find the Sum of 'n' Natural Numbers	Loop
16	Python Program to print sum of series: $-1/2 + 2/3 + 3/4 + \dots + n/(n+1)$	Loop
17	Python Program to print pattern using nested loop	Loop
18	Python Program to Display the multiplication Table of an Integer	Loop
19	Python Program to Print the Fibonacci sequence	Loop
20	Python Program to Check Armstrong Number	Loop
21	Python Program to Find Armstrong Number in an Interval	Loop

22	Python Program to check Using function whether a passed string is	Function
	palindrome or not	
23	Python Program using function that takes a number as a parameter,	Function
	check whether the number is prime or not.	
24	PythonProgram using function that computes gcd of two given numbers.	Function
25	Python Program to Find LCM of two or more given numbers.	Function
26	Python Program to Convert Decimal to Binary, Octal and Hexadecimal	Function
27	Python Program To Find ASCII value of a character	Basic
28	Python Program to Display Calendar	Loop
29	Python Program to Add Two Matrices	Loop
30	Python Program to Multiply Two Matrices	Loop
31	Python Program to Transpose a Matrix	Loop
32	Python Program to Sort Words in Alphabetic Order	Sorting
33	Python Program to Display Fibonacci Sequence Using Recursion	Recursion
34	Python Program to Find Factorial of Number Using Recursion	Recursion
35	Python Program that implements different string methods.	String
36	Python Program that validates given mobile number. Number should	String
	start with 7, 8 or 9 followed by 9 digits.	
37	Python Program to implement various methods of a list.	List
38	Python Program that has a nested list to store toppers details. Edit the	List
	details and reprint them.	
39	Python Program to swap two values using tuple assignment.	Tuple
40	Python Program that has a set of words in English language and their	Dictionary
	corresponding Hindi words. Define dictionary that has a list of words in	
	Hindi language and their corresponding Hindi Sanskrit. Take all words	
	from English language and display their meaning in both languages.	
41	Python Program that inverts a dictionary.	Dictionary
42	Python Program that reads data from a file and calculates percentage of	File
	white spaces, lines, tabs, vowels and consonants in that file.	
43	Python Program that fetches data from a given url and write it in a file.	File
44	Python Program to understand the concept of Exception Handling	Exception
		Handling
45	Python Program to implement linear and binary search	Searching
46	Python Program to sort a set of given numbers using Bubble sort	Sorting
S.No.	Word Problem Experiments	
1.	String Rotation	
	Problem Description	
	Rotate a given String in the specified direction by specified magnitude.	
	After each rotation make a note of the first character of the rotated Str	_
	rotation are performed the accumulated first character as noted previous	sly will form
	another string, say FIRSTCHARSTRING.	

Check If FIRSTCHARSTRING is an Anagram of any substring of the Original string. If yes print "YES" otherwise "NO". Input

The first line contains the original string s. The second line contains a single integer q. The ith of the next q lines contains character d[i] denoting direction and integer r[i] denoting the magnitude.

Constraints

1 <= Length of original string <= 30

 $1 \le q \le 10$

Output

YES or NO

Explanation

Example 1

Input

carrace

3

L 2

R 2

L 3

Output

NO

Explanation

After applying all the rotations, the FIRSTCHARSTRING string will be "rcr" which is not an gram of any sub string of original string "carrace".

2. Jurassic Park

Problem Description

Smilodon is a ferocious animal which used to live during the Pleistocene epoch (2.5 mya–10,000 years ago). Scientists successfully created few smilodons in an experimental DNA research. A park is established and those smilodons are kept in a cage for visitors.

This park consists of Grasslands(G), Mountains(M) and Waterbodies(W) and it has three gates (situated in grasslands only). Below is a sample layout.

W	М	G	G	G	G
М	G	W	G	М	М
G	G	G	G	G	G
W	G	G	M	W	G

Before opening the park, club authority decides to calculate Safety index of the park. The procedure of the calculation is described below. Please help them to calculate. Safety Index calculation

Assume a person stands on grassland(x) and a Smilodon escapes from the cage situated on grassland(y). If the person can escape from any of those three gates before

the Smilodon able to catch him, then the grassland(x) is called safe else it is unsafe. A person and a Smilodon both take 1 second to move from one area to another adjacent area(top, bottom, left or right) but a person can move only over grasslands though Smilodon can move over grasslands and mountains.

If any grassland is unreachable for Smilodon(maybe it is unreachable for any person also), to increase safe index value Club Authority use to mark those grasslands as safe land. Explained below

For the above layout, there is only one gate at (4,6)

Y is the position of Smilodon's cage

X is not safe area

Z is a safe area as is it not possible for smilodon to reach z

Safety index=(total grassland areas which are safe*100)/total grassland area

Constraints

- i. $3 \le R, C \le 10^3$
- ii. Gates are situated on grasslands only and at the edge of the park
- iii. The cage is also situated in grassland only
- iv. The position of the cage and the position of three gates are different

Input Format

The first line of the input contains two space-separated integers R and C, denoting the size of the park (R*C)

The second line contains eight space-separated integers where

First two integers represent the position of the first gate

3rd and 4th integers represent the position of second gate

5th and 6th integers represent the position of third gate respectively

The last two integers represent the position of the cage

Next R lines, each contains space separated C number of characters. These R lines represent the park layout.

Output

Safety Index accurate up to two decimal places using Half-up Rounding method

Explanation

Example 1

Input

44

11213113

G GGG

GWWM

GGWW

MGMM

Output

75.00

3. Bank Compare

Problem Description

There are two banks; Bank A and Bank B. Their interest rates vary. You have received offers from both bank in terms of annual rate of interest, tenure and variations of rate of interest over the entire tenure.

You have to choose the offer which costs you least interest and reject the other.

Do the computation and make a wise choice.

The loan repayment happens at a monthly frequency and Equated Monthly Installment (EMI) is calculated using the formula given below :

EMI = loanAmount * monthlyInterestRate/(1 - 1 / (1

+monthlyInterestRate)^(numberOfYears * 12))

Constraints

i. $1 \le P \le 1000000$

ii. $1 \le T \le 50$

iii. 1<= N1 <= 30

iv. $1 \le N2 \le 30$

Input Format

First line : P – principal (Loan Amount)

Second line : T – Total Tenure (in years).

Third Line: N1 is number of slabs of interest rates for a given period by Bank A. First slab starts from first year and second slab starts from end of first slab and so on.

Next N1 line will contain the interest rate and their period.

After N1 lines we will receive N2 viz. the number of slabs offered by second bank.

Next N2 lines are number of slabs of interest rates for a given period by Bank B. First slab starts from first year and second slab starts from end of first slab and so on.

The period and rate will be delimited by single white space.

Output

Your decision – either Bank A or Bank B.

Explanation

Example 1

Input

10000

20

3

5 9.5

109.6

5 8.5

3

10 6.9

5 8.5

5 7.9

Output

Bank B

4. Cross Words

Problem Description

A crossword puzzle is a square grid with black and blank squares, containing clue numbers (according to a set of rules) on some of the squares. The puzzle is solved by obtaining the solutions to a set of clues corresponding to the clue numbers.

The solved puzzle has one letter in each of the blank square, which represent a sequence of letters (consisting of one or more words in English or occasionally other languages) running along the rows (called "Across", or "A") or along the columns (called "Down" or "D"). Each numbered square is the beginning of an Across solution or a Down solution. Some of the across and down solutions will intersect at a blank square, and if the solutions are consistent, both of them will have the same letter at the intersecting square.

In this problem, you will be given the specifications of the grid, and the solutions in some random order. The problem is to number the grid appropriately, and associate the answers consistently with the clue numbers on the grid, both as Across solutions and as Down solutions, so that the intersecting blank squares have the same letter in both solutions.

Rules for Clue Numbering

The clue numbers are given sequentially going row wise (Row 1 first, and then row2 and so on)

Only blank squares are given a clue number

A blank square is given a clue number if either of the following conditions exist (only one number is given even if both the conditions are satisfied)

It has a blank square to its right, and it has no blank square to its left (it has a black square to its left, or it is in the first column). This is the beginning of an Across solution with that number

It has a blank square below it, and no blank square above it (it has a black square above it or it is in the first row). This is the beginning of a Down solution with that number

Constraints

- i. 5<=N<=15
- ii. $5 \le M \le 50$

Input Format

The input consists of two parts, the grid part and the solution part

The first line of the grid part consists of a number, N, the size of the grid (the overall grid is N x N) squares. The next N lines correspond to the N rows of the grid. Each line is comma separated, and has number of pairs of numbers, the first giving the position (column) of the beginning of a black square block, and the next giving the length of the block. If there are no black squares in a row, the pair "0,0" will be

specified. For example, if a line contains "2,3,7,1,14,2", columns 2,3,4 (a block of 3 starting with 2), 7 (a block of 1 starting with 7) and 14,15 (a block of 2 starting with 14) are black in the corresponding row.

The solution part of the input appears after the grid part. The first line of the solution part contains M, the number of solutions. The M subsequent lines consist of a sequence of letters corresponding to a solution for one of the Across and Down clues. All solutions will be in upper case (Capital letters)

Output

The output is a set of M comma separated lines. Each line corresponds to a solution, and consists of three parts, the clue number, the letter A or D (corresponding to Across or Down) and the solution in to that clue (in upper case)

The output must be in increasing clue number order. If a clue number has both an Across and a Down solution, they must come in separate lines, with the Across solution coming before the Down solution.

Explanation

Example 1

Input

5

5.1

1,1,3,1,5,1

0,0

1,1,3,1,5,1

1,1

5

EVEN

ACNE

CALVE

PLEAS

EVADE

Output

1,A,ACNE

2,D,CALVE

3,D,EVADE

4,A,PLEAS

5.A.EVEN

5. Skateboard

Problem Description

The amusement park at Patagonia has introduced a new skateboard competition. The skating surface is a grid of N x N squares. Most squares are so constructed with slopes that it is possible to direct the skateboard in any of up to three directions of the possible four (North ,East, South or West, represented by the letters N, E, S and W

respectively). Some squares however have a deep drop from the adjacent square from which it is impossible to go to any adjacent square. These are represented by D (for Drop) in that square. The objective is to maneuver the skateboard to reach the South East corner of the grid, marked F.

Each contestant is given a map of the grid, which shows where the Drop squares are (marked D), where the Final destination is (marked F), and, for each other square, the directions it is possible to maneuver the skateboard in that square.

The contestant draws lots to determine which of the squares on the boundaries of the grid on the North or the West of the grid (the top or the left in the diagram) he or she should start in. Then, using a map of the grid, he or she needs to try to reach the South East corner destination by maneuvering the skateboard.

ES	ES	SE	ES	ES	s
SE	ES	SE	ES	ES	s
ES	ES	SE	ES	SE	S
	SE	ES	SE	E	D
ES	_				
9E	ES	D	WSE	MES	MS

In some cases, it is impossible to reach the destination. For example, in the diagram above, if one starts at the North East corner (top right in the diagram), the only way is to go is South, until the Drop square is reached (three squares South), and the contestant is stuck there.

A contestant asks you to figure out the number of squares at the North or West boundary (top or left boundary in the map) from which it is feasible to reach the destination.

Constraints

i.
$$5 \le N \le 50$$

Input Format

The first line of the input is a positive integer N, which is the number of squares in each side of the grid.

The next N lines have a N strings of characters representing the contents of the map for that corresponding row. Each string may be F, representing the Final destination, D, representing a drop square, or a set of up to three of the possible four directions (N,E,S,W) in some random order. These represent the directions in which the contestant can maneuver the skateboard when in that square.

Output

The output is one line with the number of North or West border squares from which

there is a safe way to maneuver the skateboard to the final destination.

Explanation

Example 1

Input

6

ES,ES,SE,ES,ES,S

SE,ES,SE,ES,ES,S

ES,ES,SE,ES,SE,S

ES,SE,ES,SE,E,D

SE,ES,D,WSE,NES,NS

E,E,NE,E,E,F

Output

6. Chakravyuha

Problem Description

During the battle of Mahabharat, when Arjuna was far away in the battlefield, Guru Drona made a Chakravyuha formation of the Kaurava army to capture YudhisthirMaharaj. Abhimanyu, young son of Arjuna was the only one amongst the remaining Pandava army who knew how to crack the Chakravyuha. He took it upon himself to take the battle to the enemies.

Abhimanyu knew how to get power points when cracking the Chakravyuha. So great was his prowess that rest of the Pandava army could not keep pace with his advances. Worried at the rest of the army falling behind, YudhisthirMaharaj needs your help to track of Abhimanyu's advances. Write a program that tracks how many power points Abhimanyu has collected and also uncover his trail

A Chakravyuha is a wheel-like formation. Pictorially it is depicted as below

Fig 1. Chakravyuha

A Chakravyuha has a very well-defined co-ordinate system. Each point on the coordinate system is manned by a certain unit of the army. The Commander-In-Chief is always located at the centre of the army to better co-ordinate his forces. The only way to crack the Chakravyuha is to defeat the units in sequential order.

A Sequential order of units differs structurally based on the radius of the Chakra. The radius can be thought of as length or breadth of the matrix depicted above. The structure i.e. placement of units in sequential order is as shown below

1	2	3	4	5
16	17	18	19	6
15	24	25	20	7
14	23	22	21	8
13	12	11	10	9

Fig 2. Army unit placements in Chakravyuha of size 5

The entry point of the Chakravyuha is always at the (0,0) co-ordinate of the matrix above. This is where the 1st army unit guards. From (0,0) i.e. 1st unit Abhimanyu has to march towards the center at (2,2) where the 25th i.e. the last of the enemy army unit guards. Remember that he has to proceed by destroying the units in sequential fashion. After destroying the first unit, Abhimanyu gets a power point. Thereafter, he gets one after destroying army units which are multiples of 11. You should also be a in a position to tell YudhisthirMaharaj the location at which Abhimanyu collected his power points.

Input Format:

First line of input will be length as well as breadth of the army units, say N

Output Format:

- Print NxN matrix depicting the placement of army units, with unit numbers delimited by (\t) Tab character
- Print Total power points collected
- Print coordinates of power points collected in sequential fashion (one per line)
- Constraints: $0 < N \le 100$

Sample Input and Output

S.	Input	Output
NO.		
1	2	1 2
		4 3
		Total Power points: 1
		(0,0)
2	5	1 2 3 4 5
		16 17 18 19 6
		15 24 25 20 7
		14 23 22 21 8
		13 12 11 10 9
		Total Power points : 3
		(0,0)
		(4,2)

	(3,2)			
•	Exam Efficiency			
	Problem Description			
	In an examination with multiple choice questions, the following is the exam question			
	pattern.			
	• X1 number of One mark questions, having negative score of -1 for			
	answering wrong			
	 X2 number of Two mark questions, having negative score of -1 and -2 for one or both options wrong X3 number of Three mark questions, having negative score of -1, -2 and -3 for one, two or all three options wrong 			
	 Score Required to Pass the exam : Y 			
	• For 1,2 and 3 mark questions, 1,2 and 3 options must be selected.			
	Simply put, once has to attempt to answer all questions against all			
	options.			
	Identify the minimum accuracy rate required for each type of question to crack the			
	exam.			
	Calculations must be done up to 11 precision and printing up to 2 digit precision with			
	ceil value			
	Input Format:			

First line contains number of one mark questions denoted by X1,

Second line contains number of two mark questions denoted by X2

Third line contains number of three mark questions denoted by X3

Fourth line contains number of marks required to pass the exam denoted by Y.

Output Format:

Minimum Accuracy rate required for one mark question is 80%

Minimum Accuracy rate required for Two mark question is 83.33%

Minimum Accuracy rate required for Three mark question is 90%

Note: - If the mark required to pass the exam can be achieved by attempting without attempting any particular type of question then show message similar to, One mark question need not be attempted, so no minimum accuracy rate applicable

Sample Input and Output

S.No.	Input	Output	Explanation

1	20	One mark questions need not be	If one got full marks in two
	30	attempted, so no minimum	marks question and three
30		accuracy rate applicable.	marks question then total
	120	Minimum Accuracy rate required	accuracy can be 0 in one
		for Two mark question is 58.33%	mark question
		Minimum Accuracy rate required	
		for Three mark question is 72.23%	In same way it will be done
			for two marks and three
			marks question
2	20	Minimum Accuracy rate required	If one got full marks in two
	30	for one mark question is 100%	marks question and three
	30	Minimum Accuracy rate required	marks question then total
	170	for Two mark question is 100%	accuracy should be 100% in
		Minimum Accuracy rate required	one mark question to pass the
		for Three mark question is 100%	exam.
			In same way it will be done
			for two marks and three
			marks question

8. Calculate Salary and PF

Problem Description

Calculate the Final Salary & Final Accumulated PF of an Employee working in ABC Company Pvt. Ltd. The Company gives two Increments (i.e. Financial Year Increment & Anniversary Increment) to an Employee in a Particular Year.

The Employee must have Completed 1 Year to be Eligible for the Financial Year Increment. The Employee who are joining in the month of Financial Year Change (i.e.April) are considered as the Luckiest Employee's, because after completion of 1 Year, they get Two Increments

(Financial Year Increment & Anniversary Increment).

Rate of Interest for the Financial Year Increment = 11%.

Rate of Interest for the Anniversary Increment = 12%.

From 4th Year, the Financial Year Increment will be revised to 9%.

From 8th Year, the Financial Year Increment will be revised to 6%.

The Company is giving special Increment for the Employee who have completed 4 years & 8 years respectively.

So, the Anniversary Increment of the Employee for the 4th Year will be 20% and the Anniversary Increment of the Employee for the 8th year will be 15%.

Calculate the Final Salary after N number of Years as well as Calculate the Accumulated PF of the Employee after N number of Years.

Please Note that, the Rate of Interest for calculating PF for a Particular Month is 12%. Moreover, take the upper Limit of the amount if it is in decimal (For e.g. - If any Amount turns out to be 1250.02, take 1251 for the Calculation.)

Input Format:

- i. Joining Date in dd/mm/yy format
- ii. Current CTC.
- iii. Number of Years for PF & Salary Calculation.

Output Format:

- Salary after the Specified Number of Years (i.e. CTC after N number of Years) in the following format
 - Final Salary =
- ii. Accumulated PF of the Employee after N number of Years in the following format
 - Final Accumulated PF =

Constraints:

Calculation should be done upto 11-digit precision and output should be printed with ceil value

Sample Input and Output

S.No.	Input	Output
1	5	Final Salary = 13924
	01/01/2016	Final Accumulated PF = 2665
	10000	
	2	
2	19/01/2016	Final Salary = 14718
	6500	Final Accumulated PF = 4343
	4	

9. ISL Schedule

Problem Description

The Indian Soccer League (ISL) is an annual football tournament.

The group stage of ISL features N teams playing against each other with following set of rules:

- i. N teams play against each other twice once at Home and once Away
- ii. A team can play only one match per day
- iii. A team cannot play matches on consecutive days
- iv. A team cannot play more than two back to back Home or Away matches
- v. Number of matches in a day has following constraints
 - a. The match pattern that needs to be followed is -
 - Day 1 has two matches and Day 2 has one match,
 - Day 3 has two matches and Day 4 has one match and so on
 - b. There can never be 3 or more matches in a day
- vi. Gap between two successive matches of a team cannot exceed floor(N/2) days where floor is the mathematical function floor()
- vii. Derby Matches (any one)

- a. At least half of the derby matches should be on weekend
- b. At least half of the weekend matches should be derby matches

Your task is to generate a schedule abiding to above rules.

Input Format:

First line contains number of teams (N).

Next line contains state ID of teams, delimited by space

Output Format:

Match format: Ta-vs-Tb

where Ta is the home team with id a and Tb is the away team with id b.

For each day print the match(es) in following format:-

Two matches:- "#D Ta-vs-Tb Tm-vs-Tn"

One match:- "#D Tx-vs-Ty"

where D is the day id and [a, b, m, n, x, y] are team ids.

Constraints:

i.
$$8 \le N \le 100$$

Note:

- Team ids are unique and have value between 1 to N
- Day id starts with 1
- Every 6th and 7th day are weekends
- Derby is a football match between two teams from the same state

Sample Input and Output

S.No.	Input	Output
1	8	#1 T1-vs-T6 T3-vs-T5
	12543166	#2 T7-vs-T4
		#3and so on

Note: - There can be multiple correct answers for the same test cases. For better understanding of test case refer this PDF. This PDF contains one of the correct answer for a test case.

Explanation:

There are 8 teams with following information: -

Team ID	1	2	3	4	5	6	7	8
State ID	1	2	5	4	3	1	6	6

10. Longest Possible Route

Problem Description

Given an MxN matrix, with a few hurdles arbitrarily placed, calculate the cost of longest possible route from point A to point B within the matrix.

Input Format:

i. First line contains 2 numbers delimited by whitespace where, first number M is number of rows and second number N is number of

columns

- ii. Second line contains number of hurdles H followed by H lines, each line will contain one hurdle point in the matrix.
- iii. Next line will contain point A, starting point in the matrix.
- iv. Next line will contain point B, stop point in the matrix.

Output Format:

Output should display the length of the longest route from point A to point B in the matrix.

Constraints:

- i. The cost from one position to another will be 1 unit.
- ii. A location once visited in a particular path cannot be visited again.
- **iii.** A route will only consider adjacent hops. The route cannot consist of diagonal hops.
- iv. The position with a hurdle cannot be visited.
- v. The values MxN signifies that the matrix consists of rows ranging from 0 to M-1 and columns ranging from 0 to N-1.
- vi. If the destination is not reachable or source/ destination overlap with hurdles, print cost as -1.

Sample Input and Output

S. No.	Input	Output	Explanation
1	3 10	24	Here matrix will be of size 3x10 matrix with a hurdle at
	3		(1,2), $(1,5)$ and $(1,8)$ with starting point A $(0,0)$ and stop
	1 2		point B(1,7)
	1 5		
	18		3 10
	0 0		3 (no. of hurdles)
	1 7		1 2
			1 5
			1 8
			0 0 (position of A)
			17 (position of B)
			(->) count is 24. So final answer will be 24. No other
			route longer than this one is possible in this matrix.
2	2 2	-1	No path is possible in this 2*2 matrix so answer is -1
	1		
	0 0		
	1 1		
	0 0		

11. Min Product array

Problem Description

The task is to find the minimum sum of Products of two arrays of the same size, given

that k modifications are allowed on the first array. In each modification, one array element of the first array can either be increased or decreased by 2.

Note- the product sum is Summation (A[i]*B[i]) for all i from 1 to n where n is the size of both arrays

Input Format:

- i. First line of the input contains n and k delimited by whitespace
- ii. Second line contains the Array A (modifiable array) with its values delimited by spaces
- iii. Third line contains the Array B (non-modifiable array) with its values delimited by spaces

Output Format:

Output the minimum sum of products of the two arrays

Constraints:

- i. $1 \le N \le 10^5$
- ii. $0 \le |A[i]|, |B[i]| \le 10^5$
- iii. $0 \le K \le 10^9$

Sample Input and Output

S.No.	Input	Output
1	3 5	-31
	1 2 -3	
	-2 3 -5	
2	5 3	25
	2 3 4 5 4	
	3 4 2 3 2	

Explanation for sample 1:

Here total numbers are 3 and total modifications allowed are 5. So we modified A[2], which is -3 and increased it by 10 (as 5 modifications are allowed). Now final sum will be

$$(1*-2) + (2*3) + (7*-5)$$

- -2 + 6 35
- -31
- -31 is final answer.

Explanation for sample 2:

Here total numbers are 5 and total modifications allowed are 3. So we modified A[1], which is 3 and decreased it by 6 (as 3 modifications are allowed).

Now final sum will be

$$(2 * 3) + (-3 * 4) + (4 * 2) + (5 * 3) + (4 * 2)$$

$$6 - 12 + 8 + 15 + 8$$

25

25 is final answer.

12. | Consecutive Prime Sum

Problem Description

Some prime numbers can be expressed as a sum of other consecutive prime numbers. For example, 5 = 2 + 3, 17 = 2 + 3 + 5 + 7, 41 = 2 + 3 + 5 + 7 + 11 + 13. Your task is to find out how many prime numbers which satisfy this property are present in the range 3 to N subject to a constraint that summation should always start with number 2. Write code to find out the number of prime numbers that satisfy the above-mentioned property in a given range.

S.	Input	Output	Comment
No.			
1	20	2	(Below 20, there are 2 such members: 5 and 17) $5 = 2+3$
			3 = 2+3 $17 = 2+3+5+7$
2	15	1	

Input Format:

First line contains a number N

Output Format:

Print the total number of all such prime numbers which are less than or equal to N.

Constraints:

2<N<=12,000,000,000

13. kth largest factor of N

Problem Description

A positive integer d is said to be a factor of another positive integer N if when N is divided by d, the remainder obtained is zero. For example, for number 12, there are 6 factors 1, 2, 3, 4, 6, 12. Every positive integer k has at least two factors, 1 and the number k itself. Given two positive integers N and k, write a program to print the kth largest factor of N.

Input Format:

The input is a comma-separated list of positive integer pairs (N, k)

Output Format:

The kth highest factor of N. If N does not have k factors, the output should be 1.

Constraints:

1 < N < 10000000000. 1 < k < 600. You can assume that N will have no prime factors which are larger than 13.

Example 1

Input:

12,3

Output:

4

Explanation:

N is 12, k is 3. The factors of 12 are (1,2,3,4,6,12). The highest factor is 12 and the

third largest factor is 4. The output must be 4

14. | Coins Distribution Question (or Coins Required Question)

Problem Description

Find the minimum number of coins required to form any value between 1 to N, both inclusive. Cumulative value of coins should not exceed N. Coin denominations are 1 Rupee, 2 Rupee and 5 Rupee.

Let's understand the problem using the following example. Consider the value of N is 13, then the minimum number of coins required to formulate any value between 1 and 13, is 6. One 5 Rupee, three 2 Rupee and two 1 Rupee coins are required to realize any value between 1 and 13. Hence this is the answer.

However, if one takes two 5 Rupee coins, one 2 rupee coins and two 1 rupee coins, then to all values between 1 and 13 are achieved. But since the cumulative value of all coins equals 14, i.e., exceeds 13, this is not the answer.

Input Format

A single integer value

Output Format

Four Space separated Integer Values

1st – Total Number of coins

2nd – number of 5 Rupee coins.

3rd – number of 2 Rupee coins.

4th – number of 1 Rupee coins.

Constraints

0<n<1000

Sample Input:

13

Sample Output:

6132

S. NO. Debugging Experiments 1. Write error/output in the following code. # abc.py deffunc(n): return n + 10 func('Hello') 2. Write the output of the following code. if not a or b: print 1 elif not a or not b and c:

```
print 2
      elif not a or b or not b and a:
        print 3
      else:
        print 4
      Write error/output in the following code.
3.
      count = 1
      defdoThis():
        global count
        for i in (1, 2, 3):
           count += 1
      doThis()
      print count
      Write the output of the following code.
4.
      check1 = ['Learn', 'Quiz', 'Practice', 'Contribute']
      check2 = check1
      check3 = check1[:]
      check2[0] = 'Code'
      check3[1] = 'Mcq'
      count = 0
      for c in (check1, check2, check3):
        if c[0] == 'Code':
           count += 1
        if c[1] == 'Mcq':
           count += 10
      print count
      What is the output of the following program?
5.
      D = dict()
      for x in enumerate(range(2)):
        D[x[0]] = x[1]
        D[x[1]+7] = x[0]
```

```
print(D)
      What is the output/error in the following program?
6.
      D = \{1:1,2:'2','1':1,'2':3\}
      D['1'] = 2
      print(D[D[D[str(D[1])]])
      What is the output/error in the following program?
7.
      D = \{1 : \{'A' : \{1 : "A"\}, 2 : "B"\}, 3 : "C", 'B' : "D", "D": 'E'\}
      print(D[D[D[1][2]]], end = " ")
      print(D[D[1]["A"][2]])
      What is the output/error in the following program?
8.
      D = dict()
      for i in range (3):
        for j in range(2):
           D[i] = j
      print(D)
      What is the output/error in the following program?
9.
      x = ['ab', 'cd']
      for i in x:
      x.append(i.upper())
      print(x)
     What is the output/error in the following program?
10.
      i = 1
      while True:
        if i\%3 == 0:
           break
        print(i)
      i += 1
```

Course Code		ode	AASL0151	LT P			
Course Title		tle	Professional Communication Lab	0 0 2	1		
			Suggested list of Experiment				
Sr.	Nam	e of I	Experiment				
No.							
1	Exten	ipore s	speech& Jam Sessions (4 hrs)				
2	Group	Discu	ussion (4 hrs)				
3	Preser	ntation	s (Individual and group) (4 hrs)				
4	Listen	ing Pr	actice (2 hrs)				
5	News/	Book 'Book	Review (Presentation based) (4 hrs)				
Lab	b Cour	se O	utcome:				
At th	e end of	f the c	ourse students will be able to -				
CC	O 1	Learn to use English language for communicating ideas.					
CO 2		Develop interpersonal skills and leadership abilities.					
CC	0.3	Practice their public speaking skills and gain confidence in it.					
CC	0.4	Realize the importance of analytical listening during communication.					
CC	0.5	Apply	critical thinking skills in interpreting texts and disc	courses.			

Cours	se Code	AME0151	LTP	Credit
G Will			0.0.2	1.5
Cours	se Title	Digital Manufacturing Practices	0 0 3	1.5
Cours	se objec	tive:		
1	_	art knowledge to students about the latest technolocturing technology.	gical devel	opments in
2		ke the students capable to identify and use prima eturing of job/product.	ary machin	e tools for
3		the students understand constructional features, aming of CNC machines.	principle a	and coding/
4	To expl	ain current and emerging 3D printing technologies in i	ndustries.	
5.	To imp	art fundamental knowledge of Automation and Robotic	es.	
Pre-r	equisite	S: Basic knowledge about materials and their properties	es	
		Course Contents / Syllabus		
UNIT	'-I	Basics of Manufacturing processes	3]	Hours
		workshop layout, engineering materials, mechanical nanufacturing processes, concept of Industry 4.0.	l properties	of metals,
UNIT	`-II	Machining processes	5]	Hours
		conventional and CNC machines, machining part programming- G& M Codes	rameters a	nd primary
UNIT	`-III	Additive manufacturing (3D printing)	3]	Hours
Introduction to additive manufacturing, 3D printing technologies, reverse engineering, introduction to injection moulding.				
UNIT	Y-IV	Automation and Robotics	3	Hours
Introduction to basics of automation and robotics, classification based on geometry and path				
moven	nents. PT	P motion using robot arm.		
Total	hours:	14		

Course outcome: After completion of this course students will be able to					
CO 1	Understand various manufacturing process which are applied in the industry.	K ₁ , K ₂			
CO 2	Demonstrate the construction and working of conventional machine tools and computer controlled machine tools.	K ₁ , K ₂			
CO 3	Understand the programming techniques of CNC machines and Robotic arms.	K ₁ , K ₂			
CO 4	Use the different 3D printing techniques.	K ₁ , K ₂			

Text books

A course in Workshop technology by B.S. Raghuwanshi, Vol I & II, Dhanpat Rai & sons, New Delhi (30%)

Industrial automation and Robotics by A.K. Gupta., S K Arora, Laxmi publication (30%)

CNC Fundamentals and Programming by P.M Agarwal, V.J Patel, Charotar Publication (25%)

Reference Books

- (1) Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.(80% syllabus)
- (2) Rapid Product Development, Kimura Fumihiko(25% syllabus)
- (3) CNC Machines by M.Adhitan, B.S Pabla; New age international. (25% syllabus)
- (4) CAD/CAM, by Groover and Zimmers, Prentice Hall India Ltd(25% syllabus)

	NPTEL/Youtube /Faculty video links:				
Unit 1	https://youtu.be/b1U9W4iNDiQ , https://youtu.be/QZdY3ZRY9RA, https://youtu.be/KX1 NqNTIqw , https://youtu.be/deAIYwPns6w				
Unit2	https://youtu.be/jF4F8Zr2YO8 , https://youtu.be/bDpfTzV6StA, https://youtu.be/6G3sHym7YSo				
Unit3	https://youtu.be/TZmYTfPfhNE, https://youtu.be/yW4EbCWaJHE				
Unit4	https://youtu.be/K-Zg1-fR9kU , https://youtu.be/xrwz9IxpMJg , https://youtu.be/j8vYClEnyk0				

B. TECH FIRST YEAR					
`Course	Code	AME0151	LTP	Credit	
Course T	Title	Digital Manufacturing Practices	003	1.5	
		Suggested list of Experiments	-	•	
	(<i>E</i>	At least 10 experiments to be perfor	med)		
Sr. No.		Name of Experiments	}		
1	To perform	m facing, turning, taper turning, knurling	g, grooving	and threading	
	operation	s as per given drawing on lathe machine.			
2	To prepar	e a T-Shape and U-shape work piece by f	iling, sawin	g, drilling in	
	Fitting shop.				
3	To cast a c	component using a single piece pattern in for	undry shop,		
4	•	he G-M Codes for CNC machine and to pe		ū	
	operation	s including facing, turning, grooving etc on	CNC lathe.		
5	To cut a sl	ot on CNC milling machine as per given dra	wing.		
6	To make a	hole of given diameter on CNC drilling ma	chine.		
7	To study c	onstruction and working of FDM 3D printing	ng machine.		
8	To study construction and working of SLA 3D printing machine.				
9	To study the development of drawings using 3D scanner.				
10	To make an air tight bottle cap by using injection moulding.				
11	. To study construction and working of six axis robot (KUKA Sim Pro 3.0.4).				
12	Practice on pneumatic control system using single acting cylinder.				

B. TECH FIRST YEAR					
Course Code	AAS0203	L	T	P	Credit
Course Title	ENGINEERING MATHEMATICS-II	3	1	0	4

Course objective: The objective of this course is to familiarize the engineering students with techniques of solving Ordinary Differential Equations, Fourier series expansion, Laplace Transform and vector calculus and its application in real world. It aims to equip the students with adequate knowledge of mathematics that will enable them in formulating problems and solving problems analytically.

Pre-requisites:Knowledge of Engineering Mathematics –I and Mathematics upto 12th standard.

Course Contents / Syllabus

UNIT-I Ordinary Differential Equation of Higher Order

10 hours

Linear differential equation of nth order with constant coefficients, Cauchy-Euler equation, Simultaneous lineardifferential equations, Second order linear differential equations with variable coefficients, Solution by changing independent variable, Reduction of order, Normal form, Method of variation of parameters, Series solutions (Frobenius Method).

UNIT-II Sequences and series

8 hours

Definition of Sequence and series with examples, Convergence of sequence and series, Tests for convergence of series, (Ratio test, D' Alembert's test, Raabe's test). Fourier series, Half range Fourier sine and cosine series.

UNIT-III Laplace Transform

8 hours

Laplace transform, Existence theorem, Laplace transforms of derivatives and integrals, Initial and final value theorems, Unit step function, Dirac- delta function, Laplace transform of periodic function, Inverse Laplace transform, Convolution theorem, Application to solve simple linear and simultaneous differential equations.

UNIT-IV Vector Calculus

8 hours

Vector differentiation: Gradient, Curl and Divergence and their Physical interpretation, Directional derivatives, Tangent and Normal planes.

Vector Integration: Line integral, Surface integral, Volume integral, Gauss's Divergence Theorem, Green's theorem, Stoke's theorem (without proof) and their applications.

UNIT-V Aptitude-II

8 hours

Ratio, Proportion & Partnership, Problem of ages, Allegation & Mixture, Direction, Blood relation, Simple & Compound interest

Course outcome: After completion of this course students are able to:

CO 1	Apply the concept of differentiation to solve differential equations.		
CO 2	Apply the concept of convergence of sequence and series to evaluate		
	Fourier series		

CO 3	Apply the Laplace transform to solve ordinary differential equations	K ₃
CO 4	Apply the concept of vector calculus to evaluate line, surface and volume integrals.	K ₃
CO 5	Solve the problems of Proportion & Partnership, Problem of ages, Allegation & Mixture, Direction, Blood relation, Simple & Compound interest	K ₃

Text books:

- (1) B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing Company Ltd..
- (2) B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher.

Reference Books:

- 1. E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons.
- 2. Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.
- 3. Maurice D. Weir, Joel Hass, Frank R.Giordano, Thomas, Calculus, Eleventh Edition, Pearson.
- 4. G.B Thomas, R L Finney, Calculus and Analytical Geometry, Ninth Edition Pearson.
- 5. James Ward Brown and Ruel V Churchill, Fourier Series and Boundary Value Problems, 8th Edition-Tata McGraw-Hill
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole.
- 7. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 8. Charles E Roberts Jr, Ordinary Diffrential Equations, Application, Model and Computing, CRC Press T&F Group.
- 9. Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, 6th Edition, Tata McGraw-Hill.
- 10. James Ward Brown and Ruel V Churchill, Complex Variable and Applications, 8th Edition, Tata McGraw-Hill.
- 11. P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education Services Pvt. Ltd.
- 12. Advanced Engineering Mathematics By Chandrika Prasad, Reena Garg Khanna Publishing House, Delhi.
- 13. Quantitative Aptitude by R.S. Aggrawal.

Link:

Unit 1	https://www.youtube.com/watch?v=Ql42qcOLKfo&t=7s https://www.youtube.com/watch?v=qIyx1kFTqT8 https://www.youtube.com/watch?v=n_3ZmnVnrc4 https://www.youtube.com/watch?v=19Vt7ds8Lvw
Unit 2	https://www.youtube.com/watch?v=HUKR4LWrZ14&t=74s https://www.youtube.com/watch?v=uei7JPnPpVg
	https://www.youtube.com/watch?v=ummJvI0Ax2Q https://www.youtube.com/watch?v=bWTmUWWZnhQ https://www.youtube.com/watch?v=wpN1wn98XiA

	https://www.youtube.com/watch?v=gK1Y11UxOhw
	https://www.youtube.com/watch?v=Clwkvn77QrE&t=10s
	https://www.youtube.com/watch?v=LGxE_yZYigI
Unit 3	https://youtu.be/nmp-5tSp-UY
	https://youtu.be/6ANT4eD6fII
	https://youtu.be/c9NibpoQjDk
	https://www.youtube.com/playlist?list=PLNOGlXC4kCBT8G5pWCrH71hmwaAvwsBY3
Unit 4	https://youtu.be/IwgqKjA6wko
	https://youtu.be/d4OyeuRTZNA
	https://youtu.be/j36lJKSJMQk
	https://youtu.be/DhwMOrl6Q9g
	https://youtu.be/DhwMOrl6Q9g
	https://youtu.be/fsMouTxce_A
	https://youtu.be/yq5olnzDCGc
	https://youtu.be/2SB3IVCwW1w
	https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-
	functions/line-integrals-vectors/v/line-integra
	https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-
	functions/3d-flux/v/vector-representation-of-a-su
	http://nucinkis-lab.cc.ic.ac.uk/HELM/workbooks/workbook_29/29_2_surfac
	https://www.youtube.com/watch?v=Mb6Yb-SGqio
	https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-
	theorem/stokes-theorem/v/stokes-theorem-intuition
	https://www.youtube.com/watch?v=eSqznPrtzS4
Unit 5	https://www.GovernmentAdda.com

B. TECH FIRST YEAR						
Cour	se Code	AAS0202	L	T	P	Credit
Cour	Course Title Engineering Chemistry 3 1 0				4	
Cour	se objective:		•			
1	The course l	et students gain knowledge on existing	and futu	re fu	iels a	nd their
	calorific valu	calorific values				
2	The course e	xplains the major water problems and the	ir treatr	nent.	Appl	ications
	of Phase Rul	of Phase Rule in heterogeneous system.				
3	The course	The course provides basic concepts of Electrochemistry and Cements. It also				
	provides bas	ic knowledge about corrosion and their pro	evention	met	hods.	
4	The course	relies on elementary preparation and app	lication	of 1	oolym	ers and

Pre-requisites:

Course Contents / Syllabus

The course intends to provide an overview of Molecular orbital theory and basic

		<u>′ </u>	
UNIT-I	FUEL & CHEMISTRY IN DAILY LIFE		9 hours

future polymers. Applications of Organometallic compounds.

concepts of spectroscopic techniques.

Fuels: Characteristics of Good Fuel, Classification of fuels, Calorific Values (HCV & LCV and their relationship), Determination of Calorific values (bomb calorimeter & Dulong's method), Analysis of Coal, Biogas: Composition and its application, Introduction of Bharat Stage Emission Standard (BSES) System. Lubricants- Classification, mechanism, and applications

Chemistry in daily life: Hand sanitizers, surface sanitizers, Way to know content & composition of daily needs.

UNIT-II WATER CHEMISTRY AND PHASE RULE 9 hours

Potable Water, Hardness of water: Causes, types of hardness, Disadvantage of hard water, expression of hardness - Units, CaCO₃ Equivalence concept, Boiler Feed Water, Boiler trouble, Calgon Conditioning, Techniques for water softening: Lime-Soda, Zeolite, Ion- exchange resin, Reverse Osmosis (RO). Comparison between traditional water filters and RO.

Phase Rule and its application to Water System.

UNIT-III ELECTROCHEMISTRY AND SOLID CHEMISTRY 9 hours

Electrochemistry: Galvanic cell, Electrode Potential, Lead storage battery, H₂-O₂ Fuel Cell, Concept of lithium ion batteries and its application, chemical concepts of air bags in automobiles. Metallic Corrosion: causes and its Prevention.

Band theory of solids. Liquid crystals and its applications.

UNIT-IV POLYMERS AND THEIR APPLICATIONS 9 hours

Polymers: Basic concepts of polymer- Blends and composites. Conducting and Biodegradable Polymers, Preparations and applications of some industrially important Polymers: Thermosetting Polymers (Bakelite, Melamine: Urea-Formaldehyde Resins), Elastomers (Natural rubber and its vulcanization, Buna N, Buna S, Neoprene), synthetic Fibers (Nylon6, Nylon 6,6, Terylene).

UNIT-V	J	SPECTROSCOPIC TECHNIQUE AND ADVANCE METERIALS	9 hours			
Point def	Point defects in Crystals. Structure, applications of Fullerenes, Semiconductor Materials, Basic					
Concept	of Smar	t materials, Concepts of Nano-Materials and its applications.				
Elementa	ry idea	s and simple applications of UV- Visible, IR and Raman spectral	Techniques			
Course	outco	me:				
CO 1	Understand the concept of fuel, their calorific value and it's usage					
CO 2	Develop the understanding to apply the principles of water chemistry to the water treatment					
CO 3	Apply concepts of Electrochemistry, corrosion and their prevention methods with cement manufacturing					
CO 4	Understand elementary preparation and application of polymers and Organometallic compounds.					
CO 5	Under	stand Molecular orbital theory and simplified concepts of spectr	oscopic techniques			
Text bo	oks					
1.		Chemistry for Engineers, by S. Vairam and Suba Rames	sh; Wiley India			
2.		Engineering Chemistry by Sunita rattan; Ketson Publica				
3.		Engineering Chemistry, by E.R. Nagarajan; Wiley India	l			
4.		Concise Inorganic Chemistry by J.D. Lee; Wiley India				
Referen	ice Bo	oks				
1. Textbo	ok of E	Engineering Chemistry by Dr. Gopal Krishna Bhatt, Acme Publis	hers			
2. Chemi	stry (9t	h ed), by Raymond Chang, Tata McGraw-Hill				
3. Chemi	3. Chemistry Concepts and Applications by Steven S. Zumdahl; Cengage Learning					
4. Engine	ering C	Chemistry Author: Abhijit Mallick, Viva Books				
5. Text B	ook of	Engineering Chemistry by Harsh Malhotra; Sonali Publications				
6. Organi	c Chen	nistry (6 ed) by Morrison & Boyd; Pearson Education				
•		nistry by Gordon M. Barrow; Mc-Graw Hill				
		nistry, Volume 1(6 ed) & 2 (5ed) by I. L. Finar; Pearson Education				
9. Atkins	' Physic	cal Chemistry by Peter Atkins & Julio De Paula; Oxford Univers	sity Press			

		B. TECH FIRST YEAR			
Cour	rse Code	ACSE0201	L T P	Credit	
Cour	rse Title	Programming for Problem Solving using C	3 0 0	3	
Cour	se object	tive:The objective of the course is to make its stu	dents ab	le	
1	To under	stand basic concepts of C-programming language			
2	To imple	ment C programs to solve complex problems			
3	To enhan	ce debugging, analysing and problem-solving skills			
4	To create diversified solutions for real world applications using C language				
5	To acquire the knowledge of variable allocation andbinding, conditional statement, control flow, types, function, pointer, parameter passing, array, structure and file handling to solve real world problems				
termin	_	S:Students are expected to be able to open command w, edit a text file, download and install software, a			
progra		Course Contents / Syllabus			
TINITO	Γ-I Ba	asic concepts		8hours	

Number System: introduction to number system, binary arithmetic.

Concept of algorithms, Flow Charts.

UNIT-II Introduction to Programming

8 hours

Programming using C:applications of C programming, Structure of C program, Overview of compilation and execution process in an IDE, transition from algorithm to program, Syntax, logical errors and Run time errors, object and executable code, Tokens of C language: Keywords, identifiers, constant, data types.

Arithmetic expressions and precedence: Operators, operator precedence and associativity, type conversion, mixed operands, Pitfalls/Issues with sizeof () usage.

UNIT-III | Decision Control Statements, pre-processor directives 8 hours

Conditional Branching: if, else-if, nested if - else, switch statements, use of break and default with switch.

Iteration and loops: Concept of loops, for, while and do-while, multiple loop variables, use of

break and continue statements, nested loop.

Pre-processor directives: defining and calling macros, file inclusion, conditional compilation. Pointers: defining and declaring pointer, pointer arithmetic and scaling, Pointer Aliasing.

UNIT-IV | Functions and Arrays

8 hours

Functions: Concept of Sub-programming, function, types of functions, passing parameters to functions: call by value, call by reference, recursive functions, scope of variable, local and global variables, Nesting of Scope, Storage classes: Auto, Register, Static and Extern

Arrays: Array notation and representation (one and two dimensional), array using pointers, manipulating array elements, 2-d arrays used in matrix computation. Strings and C string library, Structure, union, Array of structures, Self-referential structures, passing arrays and structure as arguments

Searching techniques (Linear, Binary Search), Sorting Algorithms (Bubble, Insertion and Selection)

Introduction to dynamic memory allocation (malloc(), calloc(), realloc(), free())

UNIT-V | File handling and Introduction to Embedded Programming

8 hours

File handling: File Pointer, File I/O functions and modes, Input and Output using file pointers, Character Input and Output with Files.

Introduction to Embedded Programming: Embedded systems, Introduction to 8051microcontrolller, Installing the Keil software and loading the project, Configuring the simulator, Building the target, Running the simulation, Dissecting the program.

Case Study: Intruder Alarm System.

Course outcome: At the end of course, the student will be able to

CO 1	Develop simple algorithms for arithmetic and logical problems.	K_2
CO 2	Implement and trace the execution of programs written in C language.	K_1 , K_2 , K_4
CO 3	Implement conditional branching and iteration	K ₃
CO 4	Use function, arrays and structures to develop algorithms and programs.	K ₂ , K ₆
CO 5	Use searching and sorting algorithm to arrange data and use file handling for developing real life projects	K ₂ , K ₄

Textbooks:

- (1) Herbert Schildt, "C: The Complete Reference", OsbourneMcGraw Hill, 4th Edition, 2002.
- (2) E Balaguruswami, "Computer Concepts and Programming in C", McGraw Hill, 2010.
- (3) Michael J. Pont, "Embedded C", Addison-wesley Pearson Education, 2002.

Reference Books:

- (1) The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.
- (2) Yashwant P. Kanetkar"Let Us C", BPB publication, 2017.
- (3) Computer Basics and C Programming by V. Rajaraman, PHI Learning pvt. Limited, 2015.
- (4) Yashwant P. Kanetkar, "Working with C", BPB publication, 2003.

E-Book Links:

- (1) https://en.wikibooks.org/wiki/C_Programming
- (2) https://en.wikibooks.org/wiki/A_Little_C_Primer
- (3) https://www.goodreads.com/book/show/6968572-ansi-c-programming
- (4)https://www.pdffiller.com/347652461-projects-in-c-by-yashwant-kanetkar-pdfpdf-c-projects-yashwant-kanetkar-pdf-form-
- (5)<u>http://www.freebookcentre.net/programming-books-download/Lecture-Notes-On-C-Programming-by-L.-V.-Narasimha-Prasad-and-E.-Krishnarao-Patro.html</u>

Reference Links:

- (1) https://nptel.ac.in/courses/106/104/106104128/
- (2)https://nptel.ac.in/courses/106/104/106104074/
- (3)https://nptel.ac.in/courses/106/102/106102066/
- (4)https://nptel.ac.in/courses/106/105/106105171/
- (5)<u>https://www.youtube.com/watch?v=IdXrCPzNnkU&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=4</u>
- (6)<u>https://www.youtube.com/watch?v=L2oataK7F10&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=11</u>
- (7)https://www.youtube.com/watch?v=K538VFFmFGc&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=14
- (8)https://www.youtube.com/watch?v=HyDpW7Al6_E&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=15
- (9)https://www.youtube.com/watch?v=0g82dDC-mtc&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=17
- (10)https://www.youtube.com/watch?v=d1EHD8RoLDQ&list=PLJ5C_6qdAvBFzL9su5J-

FX8x80BMhkPy1&index=19
(11)https://www.youtube.com/watch?v=5xJ1GXTa7IU&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=21
(12)https://www.youtube.com/watch?v=I9828WOCEMg&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=26
(13)https://www.youtube.com/watch?v=V7AZuMuJmXY&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=32
(14)https://www.youtube.com/watch?v=AJvCmpt1UU8&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=37
(15)https://www.youtube.com/watch?v=1iwmwEJhcMw&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=39
(16)https://www.youtube.com/watch?v=K4qXMLItABI&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=45
(17) <u>https://www.youtube.com/watch?v=LoIe_9cTtPE&list=PLJ5C_6qdAvBFzL9su5J-</u>
FX8x80BMhkPy1&index=53
(18) https://www.youtube.com/watch?v=kDDd7AmXq1w&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=55
(19)https://www.youtube.com/watch?v=Z_0xXmOgYtY&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=58
(20) <u>https://www.youtube.com/watch?v=u60YRSB2isQ&list=PLJ5C_6qdAvBFzL9su5J-</u>
FX8x80BMhkPy1&index=61

		B.TECH FIRST YEAR			
Course Code	e	AEC0201	LTP	Cr	edits
Course Title		Basic Electrical and Electronics Engineering	3 1 0		4
Course ob	ject	tive:			
	1. 2. 3. 4. D. Co soil ele of the	To provide the basics of DC and AC analysis of phase) electrical circuits. To study the basics of transformer and calculate its To impart elementary knowledge of Power Syst and Energy Consumption.	efficiency. em Compo s, Op-Amp, REMS tage and coeral and bil d nodal me as: Superpo	urrent ateral ethods sition	Earthing,
UNIT-II	Sin rep sen po	TEADY STATE ANALYSIS OF AC CIRCUIT Ingle phase AC circuit: AC fundamentals, concept of presentation of sinusoidally varying voltage and curries and parallel RLC circuits, j-notation, Different wer factor, resonance in series and parallel circuits. In the phase AC circuit: Advantages of three phase circuit rent relations in star and delta connections.	rent, analys	sis of ower,	10
UNIT-III	SY Sin equ In sys Mo	NGLE PHASE TRANSFORMER AND ELEMENT (STEM) Ingle Phase Transformer: Principle of operation, countain, equivalent circuit, losses and efficiency. Itroduction to Elements of Power System: General stem, Components of Distribution system: Switch FCB, ELCB, MCCB, Importance of Earthing, Element energy consumption, Battery Backup.	nstruction, layout of Huse Unit (EMF Power SFU),	09
UNIT-IV	Int	EMICONDUCTOR DIODE AND THEIR APPLICA croduction of Semiconductors: Intrinsic and Extrinsic ode: Depletion layer, V-I characteristics, Half as	c, P-N June		10

	rectification, Clippers, Breakdown Mechanism: Zener and Avalanche, Zener Diode as Shunt Regulator.	
	Display Devices	
	Liquid Crystal Display (LCD), Light Emitting Diode (LED), Organic- Light Emitting Diode (O-LED), 7- segment display.	
	Light Emitting Diode (O-LED), 1- segment display.	
UNIT-V	OPERATIONAL AMPLIFIERS Introduction, Op-Amp Basic, Practical Op-Amp Circuits (Inverting Amplifier, Noninverting Amplifier, Summing Amplifier, Integrator, Differentiator). Electronic Instrumentation	09
	Digital Multimeter (DMM), Types of sensor, Introduction to IoT and its	

Course outcome: After successful completion of this course students will be able to

CO 1	Apply the principle of KVL/KCL and network theorems for analysis of
	D.C circuit.
CO 2	Analyze the steady state behavior of single phase and three phase AC electrical
	circuits.
CO 3	Illustrate and analyze the working principles of a single phase transformer,
	efficiency, and components of Power system, Earthing, and energy calculation.
CO 4	Explain the construction, working principle, and application of PN junction
	diode, Zener diode and Display devices.
CO 5	Explain the concept of Op-Amp, Digital multimeter, Sensors,IoT and its
	applications.

Text books (Atleast3)

application.

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.
- 3. C.L. Wadhwa, *Basic Electrical Engineering*, Pearson Education
- 4. J.B. Gupta, Basic Electrical Engineering, Kataria& Sons
- 5. Robert L. Boylestad / Louis Nashelsky "Electronic Devices and Circuit Theory", Latest Edition, Pearson Education.
- 6. H S Kalsi, "Electronic Instrumentation", Latest Edition, TMH Publication.

Reference Books (Atleast 3)

- 1. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 2. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press.
- 3. V. D. Toro, "Electrical Engineering Fundamentals", Pearson India.
- 4. David A. Bell, "Electronic Devices and Circuits", Latest Edition, Oxford University Press.
- 5. Jacob Millman, C.C. Halkias, Stayabratajit, "Electronic Devices and Circuits", Latest Edition, TMH.

NPTEL/Youtube/ Faculty Video Link:

Unit 1	1. https://youtu.be/FjaJEo7knF4
	2. https://youtu.be/UsLbB5k9iuY

	3.	https://youtu.be/1QfNg965OyE
	4.	https://youtu.be/wWihXHCOmUc
Unit 2	5.	https://youtu.be/ulGKCeOoR88
	1.	https://youtu.be/YLGrugmDvc0
	2.	https://youtu.be/0f7YkVorOmY
	3.	https://youtu.be/LM2G3cunKp4
	6.	https://youtu.be/S5464NnKOq4
Unit 3	1.	https://youtu.be/GgckE4H5AJE
	2.	https://youtu.be/OKkOif2JYRE
	3.	https://youtu.be/qSyUFp3Qk2I
	4.	https://youtu.be/GROtUE6ILc4
	7.	https://youtu.be/k_FqhE0uNEU
Unit 4	1.	https://youtu.be/EdUAecpYVWQ?list=PLwjK_iyK4LLBj2yTYPYKFKdF6kIg0
		ccP2
	2.	https://youtu.be/MZPeRlst8rQ
	3.	https://youtu.be/qQucInufX-s
	4.	https://youtu.be/tPFI2_PdCYA
	8.	https://youtu.be/zA-UtZ-s9GA
Unit 5	1.	https://youtu.be/AuZ00cQ0UrE?list=PLwjK_iyK4LLDBB1E9MFbxGCEnm
		MMOAXOH
	2.	https://youtu.be/aU24RWIgJVs?list=PLwjK_iyK4LLDBB1E
	3.	
	4.	- - · · · · · · · · · · · · · · · · · ·
	5.	https://youtu.be/UFJzQH3G1Ko?list=PLVrieKUj5RceFRq5MKy-f-
		EHdumStFPLt

		B.TECH. FIRST YEAR (Foreign Language)				
Course	Code	AASL0202	L I	Γ	P	Credit
Course	Title	French	2 (0	0	02
Course	objecti	ve:				
1		An introduction to French language and culture - Stude learn to understand and articulate in day to day, situations.				
2		The course provides a foundation in the four basic skills LSRW (Listening, Speaking, Reading, and Writing) of language learning.	S			
Pre-req	uisite:					
•		The student should be able to communicate in I	Eng	gl	is	h.
		Course Contents / Syllabus				
UNIT-I		Introduction to French			7	7 Hours
>> B	asic gre	eetings and introductions				
≫ D	ifferend	ces and similarities between English and French alpha	be	ts	}	
$\gg R$	ecogniz	e and spell simple words and phrases in French				
$\gg C$	ommon	ly used nouns and adjectives				
UNIT-I	I	Vocabulary Building				8 Hours
			1			
>> In	troduce	e oneself and others				
		e oneself and others speak and understand the days of the week/ months/ s	ea	SO	on	s/colours
\gg Id	lentify,		ea	SO	Эn	s/colours
➤ Id➤ S₁	lentify, peak an	speak and understand the days of the week/ months/ s				
➤ Id➤ S_I➤ U	lentify, peak an ndersta	speak and understand the days of the week/ months/ s d understand simple weather expressions				

UNIT-III	Everyday Common Simple Sentences	7 Hours
----------	---	---------

- ➤ In the city/ naming places and buildings
- > Means of transport / basic directions
- > Listen to, understand, and respond to everyday conversation
- > Respond to questions about ourselves and family members
- ➤ Use the singular and plural of regular nouns (-s).

UNIT-IV	Reading	10 Hours

- > Food, drink, groceries and meal
- > Everyday life/ telling time
- > Making appointments
- > Use definite and indefinite articles.

UNIT-V Writing 8 Hours

- >> Fill in a simple form (fiched'inscription/carte d'identité)
- ➤ Describe pictures (Speak and Write)
- > Write a short text on oneself

Course outcome

At the end of the course students will be able to

CO 1	Recognize the basic sounds, letters, numbers, words and phrases of French.	
CO 2	Develop basic French vocabulary	
CO 3	Use simple phrases in real life conversations	
CO 4	Read simple sentences	
CO 5	Write simple sentences and fill in a form	

	B.TECH FIRST YEAR (Foreign Langua	ge)		
Course Cod	le AASL0203	L	ГР	Credit
Course Title	e German	2 (0	02
Course obje	ective:	l		- 1
1	An introduction to German language and culture. Studen understand and articulate in day to day real-life situations		ill lear	n to
2	The course provides a foundation in the four basic skills I (Listening, Speaking, Reading, and Writing) of language			
Pre-requisit	tes: Ident should be able to communicate in basic English.			
	Course Contents / Syllabus			
UNIT-I	Introduction to German		5]	Hours
➤ Gramm				
UNIT-II	Vocabulary building			6 Hours
hobbiesnumbe	ulary building – the alphabet, s, ers, months, seasons nar: articles, singular and plural forms			
UNIT-III	Everyday common simple sentences			5 Hours
means of trans Grammar: def	ming places and buildings, sport, basic directions inite and indefinite articles; n and nicht; imperative	l		
UNIT-IV	Reading			7 Hours

food, drink, family / groceries and meals

Grammar: the accusative

Everyday life, telling time, making appointments

Grammar: prepositions am, um, von. bis; modal verbs, possessive articles

Leisure activity, celebrations

Grammar: separable verbs, the accusative, past tense of to have and to be

UNIT-V Writing 7 Hours

Contacts, filling basic information and forms

Grammar: dative

A short text about oneself. Grammar: changing prepositions

Professions

Grammar: perfect tense Clothes Health and the body

Grammar: perfect tense and dative

Grammar: the imperative and modal verbs

Course outcome:

At the end of the course students will be able to

CO 1	Understand and be familiar with basic German and the culture	
CO 2	Recognise the foundational vocabulary	
CO 3	Use simple phrases in everyday conversations	
CO 4	Read simple sentences	
CO 5	Write simple sentences	

Text books

- 1. NETZWERK Deutsch alsFremdsprache A1(Goyal, New Delhi, 2015)
- 2. Lagune 1
- 3. Schulz-Griesbach: Deutsch alsFremdsprache. Grundstufe in einem Band (for Grammar)

Online Practice Material

- 1. https://www.goethe.de/en/spr/kup/prf/prf/sd1/ueb.html
- 2. http://www.deutschkurse.passau.de/JM/images/stories/SKRIPTEN/a1_skript_gr.pdf
- 4. https://www.schubert-verlag.de/aufgaben/arbeitsblaetter_a1_z/a1_arbeitsblaetter_index_z.htm

B.TECH FIRST YEAR (Foreign Language)						
Course Code	AASL0204	LTP	Credit			
Course Title	Japanese	2 0 0	02			
Course objective:		•				
1	An introduction to Japanese languunderstand and articulate in day to	C	nts will learn to			
2	The course provides a foundation in the four basic skills LSRW (Listening,					
	Speaking, Reading, and Writing) of	language learning.				

Pre-requisites:

The student should be able to communicate in basic English.

The student should be keen to learn the language.

Course Contents / Syllabus

	T .	I
UNIT-I	Introduction to Japanese	8 Hours

Introduction to Japanese alphabet (Hirangana), phonetics and pronunciation.

- Introducing ourselves and others,
- Introduction to Japanese Language
- Types of Japanese scripts- HIRANGANA, KATAKANA,
- Basic pronunciation rules
- Time and numbers telling and asking the time, counting cardinal numbers,
- Grammar different types of verbs, nouns number & gender, pronouns, present and simple past tense.

UNIT-II Vocabulary building 8 Hours

Use simple sentences to answer basic personal questions

- Expressing gratitude
- Invitations
- Talking about plans
- Holidays
- Hotels & restaurants
- Town & country

TTT 1 1		. •	. •
Word order –	contonoo	anaction	nagativa
• • • • • • • • • • • • • • • • • • •	Semence.	OUESHOIL	HESALIVE
II OIG OIGGI	Doile Circo,	que de la crieri,	11050010

UNIT-III	Everyday	common si	mple	8 Hours
CIVII III	Dicijuaj		impic	Ollouis

sentences

- Customer and shopkeeper
- Making a request
- Home/ Relatives/ Fruits/ Vegetables/Animals

Grammar- Singular vs. Plural

Question formation

UNIT-IV Reading 8 Hours

- Transportation
- Week /Month names
- Shopping

Basic Japanese grammar rules – particles: \mathfrak{D} (ka), \mathfrak{L} (wa), \mathfrak{D} (no), \mathfrak{L} (to), \mathfrak{T} (ni), \mathfrak{L} (mo), \mathfrak{D} (ga), \mathfrak{D} (ya).

8 Hours

Grammar- Present, Past, Future

UNIT-V Writing

• Write short text on oneself

Grammar- Pronouns – subject, object, possessive, Modal verbs

Course outcome:

At the end of the course students will be able to

CO1	understand the basics of Japanese Language and its script.
CO2	recognise the foundational vocabulary.
CO3	use simple phrases in everyday conversations.
CO4	read simple sentences.
CO5	write simple sentences

References:

- https://www.youtube.com/watch?v=6p9II j0zjc&ab channel=LearnJapanesewithJapanesePod101.com
- https://books.google.co.in/books?id=4nHnMa4ZwMC&newbks=0&printsec=frontcover&dqminna+no+nihong-o&hl=en&source=newbks_fb&redir_esc=y#v=onepage&q=minna%20no%20nihongo&f=false

	B. TECH FIRST YEAR							
Course	Course Code AAS0252 LTP Cre							
Course	Title	Engin	eering Che	mistry Lab		0 0 2	1	
		Su	ggested lis	st of Experi	ment			
Sr. No.	Name of	Experi	ment					
1	Determina	ntion of all	calinity in the	e given water s	sample.			
2	Determina EDTA.	ntion of ter	mporary and	permanent har	dness in wa	iter sample	using	
3	Determina	ation of av	ailable chlor	ine in bleachin	ig powder.			
4	Determina	ntion of ch	loride conter	nt in water sam	ple by Moh	r's method	•	
5	Determina	ntion of iro	on content in	the given solu	tion.			
6	Verification	on of Beer	s Law using	colored compl	ex solution.	•		
7	Standardiz titration	zation of a	n alkali solut	tion through ar	n standard a	cid by pH-1	netric	
8	Viscosity	of an addi	tion polymer	· like polyester	by viscome	eter.		
9	Determination of iron concentration in sample of water by Colorimetric Method							
10	Determination of Flash Point of given fuel sample.							
11	Preparation of Bakelite and Urea formaldehyde resin.							
12	Determination of Hardness by conductivity method.							
Lab Co	urse Outo	come: Af	ter completion	on of this cour	se the stude	nt will be a	ble to:	
CO 1	Use differe	ent analyt	ical instrume	ents.				
CO 2	Calculate molecular/system properties such as surface tension, viscosity, conductance of solution, chloride and iron content in water							

CO 3	Calculat	te flash point of fuel and lubricants	
CO 4	Estimate the rate constant of reaction.		
Link:			
Unit 1		https://nptel.ac.in/courses/103/105/103105110/	
Unit 2		http://ecoursesonline.iasri.res.in/mod/page/view.php?id=124279	
Unit 3		https://nptel.ac.in/courses/122/101/122101001/ https://nptel.ac.in/courses/113/104/113104082/	
Unit 4		https://nptel.ac.in/courses/113/105/113105028/	
Unit 5		https://unacademy.com/lesson/molecular-orbital-theory-course- overview/8INM3NUR	

	B. TECH FIRST YEAR						
Course	Code	AEC0251	LTP	Credit			
Course	Title	Basic Electrical and Electronics Engineering Lab	0 0 2	01			
		Suggested list of Experiment					
Sr. No.	Name	of Experiment		CO			
1	To Ver	fy Kirchhoff's laws of a circuit		1			
2	To Veri	fy Superposition Theorem of a circuit		1			
3	To Ver	fy Thevenin's Theorem of a circuit		1			
4	To Ver	fy Norton's Theorem of a circuit		1			
5	To Ver	fy Maximum Power Transfer Theorem of a circuit		1			
6		ement of power and power factor in a single phase ac and study improvement of power factor using capacitor	series inducti	ve 2			
7		of phenomenon of resonance in RLC series circuit and	obtain resona	nt 2			
8	Determ	ination of efficiency by load test on a single phase trant input voltage using stabilizer.	sformer havii	ng 3			
9		nd Calibration of single phase energy meter.		3			
10	To desi	gn half wave rectifier circuits using diode.		4			
11	To gen	erate random numbers using 7-Segment display.		4			
12	Study of using C	of Cathode Ray Oscilloscope and measurement of difference CRO.	ent paramete	rs 4			
13		gn and perform Adder and Subtractor circuit using Op-Am	p.	5			
14		To understand the concept of Wireless Home Automation System based on IoT for controlling lights and fans.					
15	To calculate and draw different electrical parameter using MATLAB/Simulink for a circuit.						
16	Energy audit of labs and rooms of different blocks.						
Lab Co	Lab Course Outcome: After successful completion of this course students will be able to:						
CO 1		e principle of KVL/KCL and theorem to analysis DC Elect					
CO 2	Demonst	rate the behavior of AC circuits connected to single phas	e AC supply	and measure			
	power in	single phase as well as three phase electrical circuits.					
CO 3	Calculate	e efficiency of a single phase transformer and energy consu	mption.				
CO 4	Understa	nd the concept and applications of diode, Op-Amp,sensors	and IoT.				

B. TECH FIRST YEAR					
Lab C	Lab Code ACSE0251 LTP		LTP	Credit	
Lab T	itle	Programming for Problem Solving Using C Lab	002	1	
Course	outco	ome: At the end of course, the student will be a	able to	1	
CO 1	Write programs for arithmetic and logical problems.				
CO 2	CO 2 write programs for conditional branching, iteration and recursion				
CO 3 Write programs using functions and synthesize a complete program using			m using	K_4	
	divid	e and conquer approach			
CO 4 write programs using arrays, pointers and structures				K_{3} , K_{4}	
CO 5	Write	e programs to perform input/output operations on files		K ₃ , K ₄	

List of Experiment:

S.No.	Fundamental Experiments					
1.	WAP that calculate the simple interest and compound interest when principal, rate of					
	interest and time are given.					
2.	WAP that swaps values of two variables using a third variable and without using					
	third variable					
3.	WAP to compute the roots of quadratic equations.					
4.	WAP that accepts the marks of 5 subjects and finds the percentage marks obtained by					
	the student.It also prints grades according to the following criteria:					
	Between 90-100%Print 'A'					
	80-90%Print 'B'					
	60-80%Print 'C'					
	Below 60%Print 'D'					
5.	WAP to simulate the calculator (Arithmetic operations: +, -, /, *).					
6.	Write a menu driven program that computes the area of geometrical figures such as					
	rectangle, square, circle and triangle.					
7.	WAP to find the factorial of a given number.					
8.	WAP to print the Fibonacci series.					
9.	WAP to check whether the entered number is prime or not.					
10.	WAP to convert the binary number to decimal number and vice versa					
11.	WAP to print allArmstrong numbers from 1 to N.					
	Arrays					
12.	WAP to find the minimum and maximum element of the array.					
13.	WAP to search an element in an array using Linear Search.					
14.	Write programs to sort the elements of the array in ascending order using Bubble Sort					
	technique.					
15.	WAP to compute the multiplication of two matrices.					
	Pointers and Functions					

16.	WAP to swap the values of two numbers using the call by pointer.					
17.	WAP to compute the factorial of the number using the recursive function factorial ().					
18.	WAP to compute the length of the string using the user defined function xstrlen().					
19.	WAP to concatenate two strings using the user defined function xstrcat().					
	Strings and Structures					
20.	WAP to reverse the string. Also check whether the given string is in palindrome or					
	not.					
21.	WAP to create structure of a student having member name, roll number, age, marks.					
	Also, create an array of structure of 50 students and display the detail of all the					
	students having marks more than 70.					
	File Handling					
22.	WAP to copy the contents of one file onto another file.					
23.	WAP to compare the contents of two files and determine whether they are same or					
	not.					
24.	WAP to check whether the given word exist in a file or not. If yes, then find the					
	number of times it occurs.					
	Dynamic Memory Allocation					
25.	WAP to create an array using dynamic memory allocation.					
	Embedded C					
26.	Installation and working with Keil.					
27.	Implement Intruder alarm system.					

		B. TECH FIRST YEAR			
Course Code Course Title		AME0252	LTP	Credit	
		Engineering Graphics & Solid Modelling	0 0 3	1.5	
Course	objective:				
1		rize the students with the concepts of Engineering Graphic	s and provid	le	
		ing of the drafting, principles, instruments, standards, conv			
		scales, curves etc.			
2	To impart 1	knowledge about projections of point, lines and planes.			
3		he students able to understand orthographic projections of	of simple so	olids	
		ections and development of curves for lateral surfaces	-		
4	To make th	nem capable to prepare engineering drawing using CAD so	ftware.		
5		nem capable to prepare engineering drawing using CREO s			
Pre-requ	uisites: Kno	wledge of basic geometry.			
		Course Contents / Syllabus			
UNIT-I		Introduction		6 hours	
Introducti	on to enginee	ring graphics, Convention for Lines and their uses, Symb	ols for diffe	erent materials	
	_	nods of dimensioning, Scales, Cycloidal curves and involu			
UNIT-I		Projection of points, lines and planes		6 hours	
Projection	of points, lin	es and planes. (1 Sheet)	<u> </u>		
UNIT-II	I	Projection of solids and Sections of solids and		6 hours	
		Development of surfaces			
	hic projection f regular solic	ns of regular solids. Projection of section of regular solid ls(2sheet)	s. Developi	nent of lateral	
UNIT-I		Introduction to CAD		9 hours	
Introducti	on to Comput	er Aided Drawing: Drawing practice using various comm	ands (Array	, block, scale,	
fillet, char	mfer, hatch et	c.), Absolute coordinate systems, Polar coordinate system	ns and relat	ive coordinate	
systems,	Drawing prac	etice using dimensioning, Drawing of 2D planes; circle	le, polygon	s, ellipse etc,	
Drawing 1	practice using	3D primitives; Drawing of cone Prism, pyramid etc.; Cr	reate solids	using extrude,	
revolve co	ommands, Wo	rking drawings of various mechanical systems. (4 Sheets)			
UNIT-V	,	Introduction to CREO		9 hours	
Introducti	on to CREO	Parametric, features of CREO, concepts- modeling, paran	netric, assoc	ciative, feature	
based, ske	etch entities- i	nference lines, center lines, circle, arc, ellipse, rectangle,	slots, polyg	on, etc, sketch	
tools- fille	et, chamfer, of	ffset, trim, extend, split, mirror, move, copy, rotate, scale,	stretch etc.	dimensioning	
(4 Sheets)					
Course	outcome:	After completion of this course students will be able	to		
CO 1	Apply t	he basic principles of engineering graphics to draw various	is types of	K_1, K_2	
COI	1 1 2	in custo principles of ongineering grapines to draw various	as types or	17 2	

CO 2	Draw and develop the projections of points lines and planes.	K_1, K_2
CO 3	Draw orthographic projection of solids and their sections and draw the lateral surfaces.	K_3
CO 4	Apply CAD software to draw 2D and 3D drawing.	\mathbf{K}_2
CO 5	Apply CREO software to draw 2D and 3D drawing.	K_2, K_3

Text books

A Textbook of Engineering Drawing- Dr R.K. Dhawan, S.Chand Publication, Revised edition-2015

Engineering Graphics and Design- P.S. Gill, Katson books, Revised edition-2018

Reference Books

- (1) **Engineering Drawing** N.D. Bhatt & V.M. Panchal, 48thedition, 2005- Charotar Publishing House, Gujarat.
- (2) **Computer Aided Engineering Drawing** S. Trymbaka Murthy, I.K. International Publishing House Pvt. Ltd., New Delhi, 3rdrevised edition-2006

Video links

Unit 1

https://www.youtube.com/watch?v=uojN7SOHPBw

https://youtu.be/w2-a_EzO4-Q

https://www.youtube.com/watch?v=n9iQcttWHAo

Unit 2

https://www.youtube.com/watch?v=fK4h5gM73w8&list=PLIhUrsYr8yHxEk_Jv8yOatnDcr6KYK3j https://www.youtube.com/watch?v=FtugLo9DMw8&list=PLIhUrsYr8yHz_FkG5tGWXaNbIxVcibQvV https://www.youtube.com/watch?v=AoNIOxnxDO0&list=PLIhUrsYr8yHx7TVB51jN3HZVyW3R6RiBg

Unit 3

https://www.youtube.com/watch?v=YV4RZNQ2yB8&list=PLIhUrsYr8yHxARPzEFz1nXgt8j6xF_tEm https://www.youtube.com/watch?v=vlYAGkWmiW8&list=PLIhUrsYr8yHwdB96ft6c0Uwc4SDCLuG1v&index=5

https://www.youtube.com/watch?v=Vo9LC9d7FQA&list=PLIhUrsYr8yHxVky7bfrnbRcdXcHjT_K83&index=1

youtube.com/watch?v=t9gepMkey0w&list=PLItCiRV7ABU4SUL7gYOSiwmMlN1t_-gQl&index=2

Unit 4

https://www.youtube.com/watch?v=ifM0JQ6-Nus

https://www.youtube.com/watch?v=tHrfxjgFQt8

https://www.youtube.com/watch?v=c1kGuiYEHh0

https://www.youtube.com/watch?v=UKpCFYWK7q4&t=14s

https://www.youtube.com/watch?v=R8Hd7DUZcF0

https://www.youtube.com/watch?v=rzXWDgfcxec

https://www.youtube.com/watch?v=QnN8A1mIUYY

https://www.youtube.com/watch?v=Gx3yy5lKumA

https://www.youtube.com/watch?v=tnylweRokkw

Unit 5

https://www.youtube.com/watch?v=sVWsUS_7V6s

https://www.youtube.com/watch?v=KsMil9ND5E8

https://www.youtube.com/watch?v=GGxmUWBoqcg

	B. TECH FIRST YEAR							
		AME0252	2	L	T	P	Credit	
		Engineering Graphics & Solid Modelling			0	3	1.5	
			Suggested list of Experiment	<u> </u>				
Sheet No.	Ex	periment	Name of Experiment					
	No	-) .	_					
1.	1		To draw plain scale and diagonal scale.					
2.	1		To draw projection of points, lines and planes.					
3.	1		To draw orthographic projection of regular solids.					
	2		To draw section of regular solids.					
4.	1							
	2		To draw cycloidal or involute curve.					
5.	1		Initiating the Graphics Package; Setting the p	aper	size	e, spa	ce; setting	
		the limits, units; use of snap and grid commands in AutoCAD						
	1		To create 2D view of a center pin with given di	men	sion	s in A	utoCAD.	
6.	2		To create 2D view of abase plate with given dimensions in AutoCAD.					
	3		To create 2D view of a bush with given dimens	ions	in A	AutoC	AD.	
7.	1		To create 3D view of a washer in AutoCAD.					
7.	2		To create 3D view of a guide pin in AutoCAD.					
	3		To create 3D view of a lock nut in AutoCAD.					
8.	1		To create drawings of given machine components in AutoCAD.					
9.	1		To understand basic of CREO					
	2		To understand basic sketching in CREO					
10.	1		To understand basic par modelling in CREO	usir	ng d	iffere	nt options	
			aiding constructions like extrude, hole, ribs, sho	ell et	c.			
11.	1		Introduction to CREO Parametric 'sketch fea	ature	s' (revolv	e, sweep,	
			helical sweep, sweep blend etc.					
12.	1		Introduction to CREO Parametric 'edit feature	es' (grou	ıp, co	py, mirror	
			tool) and 'place features' (holes, shells and dra					