

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Bachelor of Technology

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Fourth Year

(Effective from the Session: 2024-25)

Bachelor of Technology Computer Science and Engineering (Artificial Intelligence & Machine Learning)

EVALUATION COVEME

EVALUATION SCHEME

SEMESTER-VII

S.	Subject	Callind Name	Type of		Perio	ods		Evalua	tion Scher	ne	Semo	End ester	T-4-1	G 11.
No.	Codes	Subject Name	Subject	L	T	P	CT	TA	TOTAL	PS	TE	PE	Total	Credit
	WEEKS COMPULSORY INDUCTION PROGRAM							M						
1	ACSE0701	Computer Vision	Mandatory	3	0	0	30	20	50		100		150	3
2		Departmental Elective-V	Departmental Elective	3	0	0	30	20	50		100		150	3
3		Open Elective-II	Open Elective	3	0	0	30	20	50		100		150	3
4		Open Elective-III	Open Elective	3	0	0	30	20	50		100		150	3
5	ACSE0751	Computer Vision Lab	Mandatory	0	0	2				25		25	50	1
6	ACSE0759	Internship Assessment-III	Mandatory	0	0	2				50			50	1
		*Massive Open Online Courses	*M0000°											
		(For B.Tech. Hons. Degree)	*MOOCs											
		GRAND TOTAL											700	14

* List of Recommended MOOCs (Massive Open Online Courses) for Final Year B. Tech Students (Semester-VII)

S. No.	Subject Code	Course Name (NLP)	University / Industry	No of HOURS	Credits
			Partner Name		
1	AMC0278	Natural Language Processing using Python	Infosys Wingspan	15h 45m	1
1.	AMC0276	Tradutal Language 1 focessing using 1 yolon	(Infosys Springboard)	1311 43111	
2	AMC0279	Spring Boot and Angular-React Stack -DevOps Tools and	Infosys Wingspan	107h 50m	4
۷.	AMC0219	Capstone Project	(Infosys Springboard)	10711 30111	4

PLEASE NOTE: -

• Internship (3-4 weeks) shall be conducted during summer break after semester-VI and will be assessed during Semester-VII

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam, CE: Core Elective, OE: Open Elective, DE: Departmental Elective, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

	List of Departmental Electives									
Subject Codes	Subject Name	Type of Subject	Bucket Name	Branch	Semester					
ACSE0712	RPA Implementation	Departmental Elective-V	CRM-RPA	AIML	7					
ACSAI0712	Natural Language Processing	Departmental Elective-V	Data Analytics	AIML	7					
ACSE0713	Web Development using MERN Stack with DevOps	Departmental Elective-V	Full Stack Development	AIML	7					
ACSE0711	Game Programming	Departmental Elective-V	Mobility Management	AIML	7					

Bachelor of Technology Computer Science and Engineering (Artificial Intelligence & Machine Learning) <u>EVALUATION SCHEME</u>

SEMESTER-VIII

S.	Subject Codes		Type of		Perio	ods		Eval	uation Schen	ne	E Seme	ester		
No. Subject Codes	Subject Name	Subject	L	T	P	СТ	TA	TOTAL	PS	TE	PE	Total	Credit	
1		Open Elective-IV	Open Elective	2	0	0	30	20	50		100		150	2
2		Capstone Project/Industrial Internship	Mandatory	0	0	20				200		300	500	10
3		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs											
4		TOTAL											650	12

* List of Recommended MOOCs (Massive Open Online Courses) for Final Year B. Tech Students (Semester-VIII)

S.No.	Subject Code	Course Name	University/Industry Partner Name	No. of Hours	Credit
1	AMC0253	Artificial Intelligence	Infosys Wingspan (Infosys Springboard)	69h 39m	4
2	AMC0244	Java Programming Fundamentals	Infosys Wingspan (Infosys Springboard)	36h 10m	3

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam, CE: Core Elective, OE: Open Elective, DE: Departmental Elective, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

Bachelor of Technology Computer Science and Engineering (Artificial Intelligence & Machine Learning)

AICTE Guidelines in Model Curriculum:

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

	the bridge of the residence	
1.	For 6 to 12 HOURS	=0.5 Credit
2.	For 13 to 18	=1 Credit
3.	For 19 to 24	=1.5 Credit
4.	For 25 to 30	=2 Credit
5.	For 31 to 35	=2.5 Credit
6.	For 36 to 41	=3 Credit
7.	For 42 to 47	=3.5 Credit
8.	For 48 and above	=4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honours Degree as per following criterion.

- i. If he / she secures 7.50 as above CGPA.
- ii. Passed each subject of that degree program in the single attempt without any grace.
- iii. Successful completion of MOOCs based 20 credits.

	B.TECH FOURTH YEAR	_	
Subjec	t Code: ACSEU/UI	T P 0 0	
Subjec	Subject Name: Computer Vision Credits 3		}
continuo	e Objective: To learn about key features of Computer Vision, design, implement out improvement in the accuracy and outcomes of various datasets with more relianallysis results.		
Pre- re	equisites: Basic Knowledge of programming language Python/ Advanced Pythos/	on fea	tures/
	Course Contents/Syllabus		
Unit -1	Introduction to Computer Vision Computer Vision, Research and Applications, (Self-Driving Cars, Fa Recognition, Augmented & Mixed Reality, Healthcare). Most popular example Categorization of Images, Object Detection, Observation of Moving Object Retrieval of Images Based on Their Contents, Computer Vision Tacclassification, object detection, Instance segmentation. Convolutional New Networks, Evolution of CNN Architectures for Image, Recent CNN	ples ects, asks	8 Hours
Unit -2	Architectures Representation of a Three-Dimensional Moving Scene. Convolutional lay pooling layers, and padding. Transfer learning and pre-trained mo Architectures. Architectures Design: LeNet-5, AlexNet, VGGNet, GoogLeNet, ResNet, Effic Net, Mobile Net, RNN Introduction.	dels	8 Hours
Unit -3	Segmentation Popular Image Segmentation Architectures, FCN Architecture, Upsamp Methods, Pixel Transformations, Geometric Operations, Spatial Operations Image Processing, Instance Segmentation, Localisation, Object detection image segmentation using CNNs, LSTM and GRU's. Vision Models, Vis Languages, Quality Analysis, Visual Dialogue, Active Contours & Applicat Split & Merge, Mean Shift & Mode Finding, Normalized Cuts.	s in and sion	8 Hours
Unit -4	Object Detection Object Detection and Sliding Windows, R-CNN, Fast R-CNN, Object Recognition, 3-D vision and Geometry, Digital Watermarking. Object Detection face recognition instance Recognition, Category Recognition Objects, Scenes Activities, Object classification.		8 Hours
Unit -5	Visualization and Generative Models Benefits of Interpretability, Fashion MNIST, Class Activation, Map of walkthrough, GradCAM,ZFNet. Introduction about Deep Generative Mod Generative Adversarial Networks Combination VAE and GAN's, other VAE	lels,	8 Hours

GAN's deep generative models. GAN Improvements, Deep Generative Models across multiple domains, Deep Generative Models image and video applications.

Course Outcomes – Analyse knowledge of deep architectures used for solving various Vision and K4 **CO1** Pattern Association tasks. Develop appropriate learning rules for each of the architectures of perceptron and **K**3 CO₂ learn about different factors of back propagation. Deploy training algorithm for pattern association with the help of memory K5 CO₃ network. Design and deploy the models of deep learning with the help of use cases. K5 CO₄ Understand, Analyse different theories of deep learning using neural networks. **CO5** K4

Text Books:

- 1. "Introductory Techniques for 3D Computer Vision", edition 2009
- 2. Szelisk Richard, "Computer Vision: Algorithms and Applications", 2022, The University of Washington Edition, 2022
- 3. Forsyth D. and Ponce J., "Computer Vision A Modern Approach", Prentice Hall,, Edition 2015
- 4. Trucco E. and Verri A., "Introductory Techniques for 3D Computer Vision", Prentice Hall.
- 5. Davies E. R., "Computer & Machine Vision", Academic Press 4th Edition 2012
- 6. Simon J. D. Prince, "Computer Vision: Models, Learning, and Inference", Cambridge University Press Edition, 2012

Reference Books:

- 1. Forsyth D. and Ponce J., "Computer Vision: A Modern Approach", Prentice Hall, 2nd edition, 2015
- 2. "Prince, Simon J.D. "Computer Vision: Models, Learning, And Inference". Cambridge University Press, 1st Edition, 2012.
- B. Ballard D. H., Brown C. M., "Computer Vision", Prentice-Hall, 2008.
- Craig Alan B., "Understanding Augmented Reality, Concepts and Applications", Morgan Kaufmann, Edition 2013
- 5. Richard Szeliski, "Computer Vision: Algorithms and Applications (CVAA)", Springer edition, 2022

Links: NPTEL/You Tube/Web Link

https://nptel.ac.in/courses/106/105/106105216/

https://onlinecourses.nptel.ac.in/noc23_ee78/preview/

https://nptel.ac.in/courses/106/106/106106224/

https://nptel.ac.in/courses/108103174/

https://nptel.ac.in/courses/106/106/106106224/ 2023

https://onlinecourses.nptel.ac.in/

	B.TECH FOURTH YEAR				
Subje	ect Code:ACSE0751	L T P			
Subject Name: Computer Vision Lab					
Subje	ect Name: Computer Vision Lab	1			
ınders variou	se Objective: Through practical programming exercises, students will deepen the tanding CNN, Segmentation, Image Compression based models. They will be expose practical considerations, using autoencoders. Study of various advanced topics where for making deep learning systems perform well in practice.	sed to			
Cour	se outcome: After completion of this practical, students will be able to :				
CO 1	Implement a various convolutional neural network and understand its architecture.	К3			
CO 2	Apply image Modelling acquisition, Segmentation and develop a programming model to implement an Image morphological features.	К3			
CO 3	Understand Visualization of various models and Deep GAN Networks.	K2			
Li	st of Practical				
Lab No.	Program Logic Building	CO Mapping			
1	Building a simple convolutional neural network for spam classification.	CO1			
2	Building a simple convolutional neural network for image classification.	CO1			
3	Implementing different types of pooling layers and comparing their effects on network performance.	CO2			
4	Training a CNN model on a large-scale image classification dataset using cloud-based GPU acceleration.	CO1			
5	Building a simple convolutional neural network for Cats-v-dogs classification	CO1			
6	Fine-tuning a pre-trained CNN for a specific image recognition task.	CO1			
7	Building a simple convolutional neural network for transfer learning using finetuning.	CO1			
8	Building a simple convolutional neural network for transfer learning using feature extraction.	CO1			
9	Building a CNN model for object detection using a pre-trained architecture like YOLO.	CO1			
10	Exploring different activation functions and comparing their effects on network performance.	CO1			
11	Write a program to Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.	CO1			
12	Implement a program for basic image operations.	CO2			
13	Implement a program for image enhancement	CO2			
14	Implement a program for image compression	CO2			

15	Implement a program for color image processing	CO2
16	Implement a program for image segmentation	CO2
17	Design a program for image morphology	CO2
18	Implementing De-noising auto encoder.	CO2
19	Implementing Deep auto encoder.	CO2
20	Implementing convolutional auto encoder.	CO2
21	Implementing feature extraction for classification using auto encoder.	CO3
22	Implementing feature extraction for regression using auto encoder.	CO3
27	Perform scaling, rotation and shifting operations on an image using OpenCV()	CO3
28	Perform image reflection on an image using OpenCV().	CO3
23	Implementing a basic Variational Autoencoder (VAE) for image generation	CO3
24	Training a Generative Adversarial Network (GAN) to generate synthetic images.	CO3
25	Implement and apply using Image Restoration	CO3
26	Implement and apply using Edge detection	CO3
29	Perform Image shearing on an image using OpenCV().	CO3
30	Write a function for all the geometric transformations and apply it to any image	CO3
Links	·	
https://i	nptel.ac.in/courses/106/105/106105216/ 2023	
	onlinecourses.nptel.ac.in/noc23_ee78/preview/	
	nptel.ac.in/courses/106/106/106106224/	
https://r	nptel.ac.in/courses/108103174/	
_	nptel.ac.in/courses/106/106106224/ 2023	
https://c	onlinecourses.nptel.ac.in/	

	B. TECH FOURTH YEAR	
Course	ACSE0712 LTP	Credits
Course title	RPA IMPLEMENTATION 3 0 0	3
Course obje	ective: This course is designed to give a thorough understanding and practical skills in a software robots for Robotic Process Automation (RPA).	n developing
Pre-requisi	tes: Basic Knowledge of C Programming	
	Course Contents / Syllabus	
UNIT-I	DATA MANIPULATION	8 HOURS
Manipulatio	to Data Manipulation, Scalar variables, collections and Tables, Text Manipun, Gathering and Assembling Data Recording and Advanced UI Interaction; Recording esktop Recording, Web Recording, Input/output Methods, Screen Scraping, Data Scrapschniques.	Introduction,
UNIT-II	SELECTORS	8 HOURS
RPA Challe based autom Best Practic	refining and Assessing Selectors, Customization, Debugging, Dynamic Selectors, Partinge, Image, Text & Advanced Citrix Automation, Introduction to Image & Text Automation, Keyboard based automation, Information Retrieval, Advanced Citrix Automations using tab for Images Starting Apps.	ation, Image- n challenges,
UNIT-III	DATA TABLES AND AUTOMATION	8 HOURS
Extracting D	Tables & PDF, Data Tables in RPA, Excel and Data Table Basics Data Manipulationate from PDF, extracting a single piece of data, Anchors, Using anchors in PDF. mation: Email Automation, Incoming Email automation, Sending Email automation.	ion in Excel,
UNIT-IV	DEBUGGING AND EXCEPTION HANDLING	8 HOURS
	Tools, Strategies for solving issues, Catching errors. Tenants, Authentication, Users, Roles, Robots, Environments, Queues & Transaction ROBOTIC FRAMEWORK	s, Schedules. 8 HOURS
Re-Framewo	ork template, Re-Framework template works, Use Re-Framework to automate your ov	vn processes.
	es and Objects.	1
Course out	come: After completion of this course students will be able to:	
CO 1	Apply basic concepts and methods from design engineering to explore creative solutions of real-world problems.	K3
CO 2	Learn Robotic Process Automation, and massive career opportunity in this field.	K2
CO 3	Implement the knowledge of RPA tools, functions in various industries and perform, control various tasks using RPA bots.	К3
CO4	Gain expertise in Desktop, Web & Citrix Automation and use RE-Framework to build a structured business automation process.	K2
CO 5	Develop a real-world workflow automation project and will be able to debug a workflow.	K6

Textbooks:

- 1) Vaibhav Jain, "Crisper Learning: For UiPath", Latest Edition, Independently Published, 2018.
- 2) Alok Mani Tripathi, "Learning Robotics Process Automation", Latest Edition, Packt Publishing ltd, Birmingham. March 2018

Reference Books/E-Books:

- 1) Kelly Wibbenmeyer, "The Simple Implementation Guide to Robotic Process Automation (RPA)", Latest Edition, iUniverse Press.
- 2) https://www.uipath.com/hubfs/ebook-its-time-to-automate.pdf

Links:

https://www.youtube.com/watch?v=6QoCG6YIPVo&list=PL41Y-9S9wmyJarNN2KnB4XudpT1yE1kVd

https://www.youtube.com/watch?v=YOHFgrOvPTM&list=PL41Y-9S9wmyLvF6Ou0oPhg6MrFWSw7sn4

https://www.youtube.com/watch?v=QMBuyLMjOhM&list=PL41Y-9S9wmyIYX6kciM8DboVYymsv2y6K

https://www.youtube.com/watch?v=KE9raKNTkfI&list=PL41Y-9S9wmyLeXL1DY9j-XepNb_vg9N8t

https://www.youtube.com/watch?v=2rjr8QhD9oc&list=PL41Y-9S9wmyJi2zmWY77yPZrdVI7ab3Ja

	B. TECH FOURTH YEAR								
Course code	ACSAI0712	LT P	Credits						
Course title	NATURAL LANGUAGE PROCESSING	3 0 0	3						
· ·	The course aims to provide an understanding of the founda is is on providing application-based knowledge.	tional concepts an	d techniques						
Pre-requisites: Learning.	Programming Skills, Data Structures, Algorithms, Prob	ability and Statis	stics, Machine						
	Course Contents / Syllabus								
UNIT-I	OVERVIEW OF NATURAL LANGUAGE PROCESSI	NG	8 HOURS						
Definition, Appli	cations and emerging trends in NLP, Challenges. Ambiguity.		1						
UNIT-II Data Preprocessing characters, normation Vocabulary, corp	recognition, coreference resolution. REGULAR EXPRESSIONS rg: Using Python - Convert to lower case, handle email-id, Halization of data (contractions, standardize) etc. rora, and linguistic resources, Linguistic foundations: Morphysical Morphysical Regions (1988).	_							
<u> </u>	uage models: Unigram, Bigram, N-grams.								
UNIT-III	TEXT ANALYSIS AND SIMILARITY		8 HOURS						
Textual Similarity	n: Bag-of-Words model and vector space models, Term Preserv: Cosine similarity, Word Mover's distance, Word embedding	•	loVe.						
UNIT-IV	TEXT CLASSIFICATION & NLP APPLICATIONS		8 HOURS						
Text classification: Implement of applications of NLP using text classification- Sentiment Analysis, Topic modelling, Spam detection. High Level NLP applications: Machine translation: Rule-based and statistical approaches, Text summarization Dialog systems, conversational agents and chatbots.									
UNIT-V	ADVANCED NLP TECHNIQUES		8 HOURS						
* '	Introduction to sequence models - RNN and LSTM, Attend models: BERT, GPT, T5, Introduction to Hugging Face Tra		•						

Appreciate the emerging trends and challenges in NLP and perform the basic

Apply regular expressions for data cleaning and understand the fundamental

K2

K3

K3

Course outcome: After completion of this course students will be able to:

NLP tasks using some NLP library.

concepts and theories underlying NLP.

Extract features and find similarity in text data.

CO 1

CO 2

CO 3

CO4	Implement NLP techniques to design real-world NLP applications	К3
CO 5	Apply advanced techniques like sequential modelling and attention mechanism to develop NLP applications	К3

Textbooks:

- 1)Daniel Jurafsky, James H. Martin, "Speech and Language Processing", Second Edition, Pearson Education, 2009 ISBN 0131873210.
- 2)James Allen, Natural Language Understanding, 2nd edition, 1995 Pearson Education ISBN 13: 9780805303346.
- 3)Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, NLP: A Paninian Perspective,1st edition1995, Prentice ISSBN 9788120309210

Reference Books:

- 1) Christopher D. Manning and Hinrich Schutze,, "Foundations of Statistical Natural Language Processing", MIT Press, 1999 Second Edition, ISBN No. 0-262-13360-1.
- 2)T. Winograd, Language as a Cognitive Process, 1st edition, 1983 Addison- Wesley ISBN 020108-571-2 3)L.M. Ivansca, S. C. Shapiro, Natural Language Processing and Knowledge Representation, 2nd edition, 2000 AAAI Press ISBN-13: 978-0262590211

Links:

- 1) https://realpython.com/nltk-nlp-python/
- 2) https://www.coursera.org/lecture/python-text-mining/basic-nlp-tasks-with-nltk-KD8uN
- 3) https://www.coursera.org/lecture/nlp-sequence-models/learning-word-embeddings-APM5s
- 4) https://www.coursera.org/projects/regular-expressions-in-python
- 5) https://www.coursera.org/learn/python-text-mining/lecture/sVe8B/regular-expressions

	B.TECH FOURTHYEAR		
Subject Code: ACSE0713		LT P 3 0 0	
Subject Name: Web Development using MERN Stack with DevOps			
pages ar a MERN	Objective: This course focuses on how to design and build static as well as dynamid interactive web applications. Students can understand how to put them together I stack application.		
Pre- req	uisites: Student should have the knowledge of HTML, CSS and ES6		
	Course Contents/Syllabus		
Unit-1	Introduction to React JS: Overview of frameworks, NPM commands, React App, Project Directory Structure, React Component Basic, Understanding JSX, Props and State, Stateless and Stateful Components, Component life cycle, Hooks, react-router vs react-router-dom,	8 Hours	
Unit-2	Connecting React with mongodB: Google Material UI, AppBar, Material UI's Toolbar, NavBar, Material UI Buttons, SQL and Complex Transactions, Dynamic Schema, create Index (), get Indexes () & drop Index (), Replication, Statement-based vs. Binary Replication, Auto-Sharding and Integrated Caching, Load balancing, Aggregation, scalability.		
Unit-3	Node js & Express Framework: Introduction, Environment Setup, serving static resources, template engine with vash and jade, Connecting Node.js to Database, Mongoose Module, Creating Rest APIs, Express Framework, MVC Pattern, Routing, Cookies and Sessions, HTTP Interaction, User Authentication	8 Hours	
Unit-4	Evolution of DevOps: DevOps Principles, DevOps Lifecycle, DevOps Tools, and Benefits of DevOps, SDLC (Software Development Life Cycle) models, Lean, ITIL and Agile Methodology, Agile vs DevOps, Process flow of Scrum Methodologies, Project planning, scrum testing, sprint Planning and Release management, Continuous Integration and Delivery pipeline.	8 Hours	
Unit-5	CI/CD concepts (GitHub, Jenkins, Sonar): GitHub, Introduction to Git, Version control system, Jenkins Introduction, Creating Job in Jenkins, adding plugin in Jenkins, Creating Job with Maven & Git, Integration of Sonar, Dockers, Containers Image: Run, pull, push containers, Container lifecycle, Introduction to Kubernetes.		
Course	e Outcomes –		
CO1	Apply the knowledge of ES6 that are vital to implement react application over the web.	K3	
CO2	Implement and understand the impact of web designing by database connectivity with Mongodb.	K3	
CO3	Explain, analyze and apply the role of server-side scripting language like Nodejs and Express js framework	K4	
CO4	Identify the benefits of DevOps over other software development processes to Gain insights into the DevOps environment.	K2	
	Demonstrate popular open-source tools with features and associated terminology used	K3	

Textbooks:

1. Kirupa Chinnathambi, "Learning React", 2nd Edition 2016, Addison Wesley Publication.

- 2. Mohan Mehul, "Advanced Web Development with React", 2nd Edition 2020, BPB Publications
- 3. Dhruti Shah, "Comprehensive guide to learn Node.js", 1st Edition, 2018 BPB Publications.
- 4. Jennifer Davis, Ryn Daniels, "Effective DevOps: Building, Collaboration, Affinity, and Tooling at Scale", 1st Edition, 2016, O'Reilly Media Publication.
- 5. John Edward Cooper Berg, "DevOps. Building CI/CD Pipelines with Jenkins, Docker Container, AWS (Amazon Web Services) ECS, JDK 11, Git and Maven 3, Sonar, Nexus", Kindle Edition, 2019, O'Reilly Media Edition.

Reference Books:

- 1. Anthony Accomazzo, Ari Lerner, and Nate Murray, "Fullstack React: The Complete Guide to ReactJS and Friends", 4th edition, 2020 International Publishing.
- 2. David Cho, "Full-Stack React, Type Script, and Node: Build cloud-ready web applications using React 17 with Hooks and GraphQL", 2nd edition, 2017 Packt Publishing Limited.
- 3. Richard Haltman & Shubham Vernekar, "Complete node.js: The fast guide: Learn complete backend development with node.js"5th edition, 2017 SMV publication.
- 4. Glenn Geenen, Sandro Pasquali, Kevin Faaborg, "Mastering Node.js: Build robust and scalable real-time server-side web applications efficiently" 2nd edition Packt,2017 Publishing Limited.
- 5. Greg Lim," Beginning Node.js, Express & MongoDB Development, kindle edition,2019 international publishing.
- 6. Daniel Perkins, "ReactJS Master React.js with simple steps, guide and instructions" 3rd edition, 2015 SMV publication.
- 7. Peter Membrey, David Hows, Eelco Plugge, "MongoDB Basics", 2nd edition ,2018 International Publication.

Links: NPTEL/You Tube/Web Link:

https://youtu.be/QFaFIcGhPoM?list=PLC3y8-rFHvwgg3vaYJgHGnModB54rxOk3 https://youtu.be/pKd0Rpw7O48 https://youtu.be/TIB eWDSMt4 https://youtu.be/QFaFIcGhPoM https://youtu.be/Kvb0cHWFkdc https://youtu.be/pQcV5CMara8 https://youtu.be/c3Hz1qUUIyQ https://youtu.be/Mfp94RjugWQ https://youtu.be/SyEQLbbSTWg https://youtu.be/BL132FvcdVM https://youtu.be/fCACk9ziarQ https://youtu.be/YSyFSnisip0 https://youtu.be/7H QH9nipNs https://youtu.be/AX1AP83CuK4 https://youtu.be/2N-59wUIPVI https://youtu.be/hQcFE0RD0cQ https://youtu.be/UV16BbPcMQk https://youtu.be/fqMOX6JJhGo https://youtu.be/m0a2CzgLNsc https://youtu.be/1ji 9scA2C4 https://youtu.be/tuIZok81iLk https://youtu.be/IluhOk86prA https://youtu.be/13FpCxCClLY

B. TECH FOURTH YEAR						
Course code	ACSE0711	LTP	Credits			
Course title	GAME PROGRAMMING	3 0 0	3			

Course objective: The objective of this course is to understand the basic concepts of Game design and development. The course will help to build the programming skills needed to turn ideas into games.

Pre-requisites: None

Course Contents / Syllabus

UNIT-I 3D GRAPHICS FOR GAME PROGRAMMING

8 HOURS

3D Transformations, Quaternions, 3D Modeling and Rendering, Ray Tracing, Shader Models, Lighting, Color, Texturing, Camera and Projections, Character Animation, Physics-based Simulation, Scene Graphs.

UNIT-II GAME ENGINE DESIGN

8 HOURS

Game engine architecture, Engine support systems, Resources and File systems, Game loop and real-time simulation, Human Interface devices, Collision and rigid body dynamics, Game profiling.

UNIT-III GAME PROGRAMMING

8 HOURS

Application layer, Game logic, Game views, managing memory, controlling the main loop, loading and caching game data, User Interface management, Game event management.

UNIT-IV GAMING PLATFORMS AND FRAMEWORKS

8 HOURS

2D and 3D Game development, Game engines -Unity. Game Development & Documentation, Game Idea Visualization and Story Telling, Introduction to Unity interface.

UNIT-V GAME DEVELOPMENT

8 HOURS

Developing 2D and 3D interactive games using Unity – Isometric and Tile Based Games, Puzzle games, Single Player games, multi-Player games. Use of 3D Game Kit to create 3D platform gameplay and puzzles in Unity.

Course outcome: After completion of this course students will be able to:

CO 1	Create VR experiences by setting up environments, interactions, and immersive	
	elements using modern concepts of Game design.	
CO 2	Propose and design the processes and use mechanics for games.	К3
CO 3	Create 3D scenes with Unity and experiment with various user interface techniques	K6
	that are used in VR AR applications.	
CO4	Create a 2D and 3D game in Unity and arrange Game programming platforms.	K6
CO 5	Evaluate and use emerging technologies and tools for creating interactive Games.	K5

Textbooks:

- 1. Shaffrfy Mike Mc and Graham David, "Game Coding Complete", Fourth Edition, Cengage Learning, PTR, 2012.
- 2. Gregory Jason, "Game Engine Architecture", CRC Press / A K Peters, 2009
- 3. Eberly David H., "3D Game Engine Design, Second Edition: A Practical Approach to Real-Time Computer Graphics" 2nd Editions, Morgan Kaufmann, 2006.

Reference Books:

- 1. Adams Ernest and Rollings Andrew, "Fundamentals of Game Design", 2nd edition Prentice Hall/ New Riders, 2009.
- 2. Lengyel Eric, "Mathematics for 3D Game Programming and Computer Graphics", 3rd edition, Course
- 3. Schell Jesse, The Art of Game Design: A book of lenses, 1st Editions, CRC Press, 2008.

Links:

Unit 1: Install the Unity Hub and Editor

How to download and install Unity Editor using Unity Hub

https://learn.unity.com/tutorial/publish-your-first-mobile- runnergame

https://learn.unity.com/tutorial/platformer-mod-add-speed-and-bounce-pads#5d5af56dedbc2a005fb9216c

https://learn.unity.com/tutorial/quick-

 $start?uv = 201\underline{9.4\&courseId} = 5c616\underline{a}81\underline{e}db\underline{c}2\underline{a}0021\underline{b}1\underline{b}d11\&projectId} = 5c514897\underline{e}db\underline{c}2\underline{a}001fd5\underline{b}dd0\#5\underline{c}7f8528\underline{e}db$

dbc2a002053b740 https://learn.unity.com/project/3d-game-

kit?uv=2019.4&courseId=5c616a81edbc2a0021b1bd11

Unit2: https://learn.unity.com/project/3d-game-kit-lite

Unit3: https://learn.unity.com/tutorial/3d-game-kit-reference-guide

https://learn.unity.com/tutorial/next-steps-certifications-game-jams-and-

beyond?courseId=6046c239edbc2a2720f9983b

Unit4:

https://learn.unity.com/tutorial/week-1-player-control-may-17-21?courseId=6046c239edbc2a2720f9983b

https://learn.unity.com/tutorial/week-2-basic-gameplay-may-24-

28?uv=2020.3&courseId=6046c239edbc2a2720f9983b

Unit5: https://learn.unity.com/project/unit-3-oi?uv=2019.4&courseId=5edebd48edbc2a444960263e

https://docs.unity3d.com/Manual/index.html

https://msl.cs.uiuc.edu/vr/vrbook.pdf