NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme & Syllabus For

Bachelor of Technology Electronics and Communication Engineering

Second Year

(Effective from the Session: 2024-25)

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR

(AN AUTONOMOUS INSTITUTE)

Bachelor of Technology

Electronics and Communication Engineering

Evaluation Scheme

SEMESTER-III

SI.	Subject	Subject	Types of		Perio	ods	Evaluation Schemes			Evaluation Schemes				End emester Tot		al Credit
No.	Codes Subject Subject		Subjects	L	Т	Р	СТ	ТА	Total	PS	TE	PE	1000	cicuit		
		3 WEEKS	COMPULSORY	IND	UCT	TION F	PROGR	AM		1	_1		1			
1	BAS0301B	Engineering Mathematics III	Mandatory	3	1	0	30	20	50		100		150	4		
2	BEC0302	Analog Circuits	Mandatory	3	1	0	30	20	50		100		150	4		
3	BEC0301	Digital System Design	Mandatory	3	0	0	30	20	50		100		150	3		
4	BEC0303	Signals, systems and networks	Mandatory	3	0	0	30	20	50		100		150	3		
5	BEC0304	Computational Intelligence	Mandatory	3	0	0	30	20	50		100		150	3		
6	BEC0355	IoT Workshop -I	Mandatory	0	0	6				50		100	150	3		
7	BEC0352	Analog Circuits Lab	Mandatory	0	0	4				50		50	100	2		
8	BEC0351	Digital System Design Lab	Mandatory	0	0	2				25		25	50	1		
9	BEC0359	Internship Assessment	Mandatory	0	0	2				50			50	1		
10	BNC0301/ BNC0302	AI & Cyber Ethics/ Environmental Science	Compulsory Audit	2	0	0	30	20	50		50		100	NA		
11		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs													
		TOTAL											1100	24		

S.No.	Subject Code	Course Name	University/Industry Partner Name	No of Hours	Credits
1	ВМС0020	Express PCB Training	Infosys Wingspan (Infosys Springboard)	15h 6m	1
2	BMC0012	Data Structures and Algorithms using Python - Part 1	Infosys Wingspan (Infosys Springboard)	29h 27m	2

* List of MOOCs (Infosys Springboard) Based Recommended Courses for Second year (Semester-III) B. Tech Students

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-IV and will be assessed during Semester-V
- Compulsory Audit (CA) Courses (Non-Credit BNC0401/BNC0402)
 - > All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - > The Total and obtained marks are not added in the Grand Total.

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam, CE: Core Elective, OE: Open Elective, DE: Departmental Elective, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology

Electronics and Communication Engineering

Evaluation Scheme

SEMESTER-IV

SI.	Subject	Subject	Types of Subjects]	Period	ls	Ev	aluati	ion Sch	emes	En Seme		Total	Credit
No.	Codes			L	Т	Р	СТ	TA	Total	PS	TE	PE		
1	BAS0402	Engineering Mathematics -IV	Mandatory	3	1	0	30	20	50		100		150	4
2	BASL0401	Technical Communication	Mandatory	2	1	0	30	20	50		50		100	3
3	BEC0401	Analog and Digital Communication	Mandatory	3	0	0	30	20	50		100		150	3
4	BEC0403	CMOS Digital Integrated Circuit	Mandatory	3	0	0	30	20	50		100		150	3
5	BEC0402	Microprocessor and Microcontroller	Mandatory	2	0	0	30	20	50		50		100	2
6	BEC0454	Verilog - HDL Simulation and Synthesis	Mandatory	0	0	6				50		100	150	3
7	BEC0452	Microprocessor & Microcontroller workshop	Mandatory	0	0	4				50		50	100	2
8	BEC0451	Analog & Digital Communication Lab	Mandatory	0	0	4				50		50	100	2
9	BASL0451	Technical Communication Lab	Mandatory	0	0	2				25		25	50	1
10	BEC0459	Mini Project	Mandatory	0	0	2				50			50	1
11	BNC0402/ BNC0401	Environmental Science/ AI & Cyber Ethics	Compulsory Audit	2	0	0	30	20	50		50		100	NA
12		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs											
		TOTAL											1100	24

* List of MOOCs (Infosys Springboard) Based Recommended Courses for Second year (Semester-IV) B. Tech Students

S. No.	Subject Code	Course Name	University/ Industry Partner Name	No of Hours	Credits	
1	BMC0021	IoT Raspberry Pi with Projects	Infosys Wingspan	12h 25m	0.5	
-	BMC0021	lot haspberry it with hojeets	(Infosys Springboard)	1211 23111		
2	BMC0022	Mobile Apps Development - Advanced	Infosys Wingspan	14622m	1	
Z	BMC0022	Applications	(Infosys Springboard)	14h23m	T	
2	DN4C0022	Internet of Things 201	Infosys Wingspan	15h 50m	1	
3	BMC0023	Internet of Things 201	(Infosys Springboard)	15h 59m	T	

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-IV and will be assessed during Semester-V
- Compulsory Audit (CA) Courses (Non-Credit BNC0401/BNC0402)
 - All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - > The Total and obtained marks are not added in the Grand Total.

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam, CE: Core Elective, OE:Open Elective, DE: Departmental Elective, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

1. For 6 to 12 Hours =0.5 Credit

- 2. For 13 to18 =1 Credit
- 3. For 19 to 24 =1.5 Credit
- 4. For 25 to 30 = 2 Credit
- 5. For 31 to 35 = 2.5 Credit
- 6. For 36 to 41 =3 Credit
- 7. For 42 to 47 = 3.5 Credit

8. For 48 and above =4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honours Degree as per following criterion.

i. If he / she secures 7.50 as above CGPA.

ii. Passed each subject of that degree program in the single attempt without any grace.

iii. Successful completion of MOOCs based 20 credits

(AN AUTONOMOUS INSTITUTE)

SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING

Subject Name: Engineering Mathematics-III L-T-P [3-1-0] Credit: 4 Subject Code: BAS0301B **Applicable in Department: ECE Pre-requisites of the Subject:** Knowledge of Mathematics I and II of B. Tech or equivalent. Course Objective- Concept of function of complex variables, Partial differential equations & their applications, Numerical techniques for various mathematical tasks and numerical aptitude. It aims to show case the students with standard concepts and tools from B. Tech to deal with advanced level of mathematics and applications that would be essential for their disciplines. **Course outcome (CO)** Bloom's **Course outcome:** After completion of this course students will be able to: Knowledge Level(KL) Apply the concept of partial differential equation to solve partial differential Equations and problems concerned with partial CO 1 K_3 differential equations Apply the concept of Fourier Transform and Z-transform to solve difference equations. CO_2 K_3 Apply the working methods of complex functions for finding analytic functions. CO3 **K**₃ Apply the concepts of complex functions for finding Taylor's series, Laurent's series and evaluation of definite integrals CO 4 K₃ Solve the problems of Number System, Permutation & Combination, Probability, Set theory, Function, Data Interpretation, CO 5 K₃ Syllogism. Svllabus Lectur Practical/ Unit No Module Name CO Mapping **Topic covered** Assignment/ Pedagogy Requi Lab Nos

				red (L+P)		
Unit 1	Applications	Method of separation of variables for solving partial differential	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment 1.1	CO1
Unit 2	Integral Transforms	Complex Fourier transform, Inverse Transforms, Convolution Theorems, Fourier sine and cosine transform, Applications of Fourier transform to simple one-dimensional heat transfer equations and wave equations, Z- transform and its application to solve difference equations.	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment- 2.1	CO2
Unit 3	Complex Variable – Differentiation	Limit, Continuity and differentiability, Functions of complex variable, Analytic functions, Cauchy- Riemann equations (Cartesian and Polar form), Harmonic function, Method to find Analytic functions, Mobius transformation and their properties.	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment- 3.1	CO3
Unit 4	Complex Variable –Integration	Complex integrals, Contour integrals, Cauchy-Goursat theorem (Statement), Cauchy integral formula (Statement), Taylor's series, Laurent's series, Liouvilles's theorem(Statement), Singularities, Classification of Singularities, zeros of analytic functions, Residues, Methods of finding residues, Cauchy Residue theorem, Evaluation of real integrals of the type $\int_0^{2\pi} f(\sin\theta, \cos\theta)$ and $\int_{-\infty}^{\infty} f(x) dx$.	Classroom Teaching, Smart Board, PPT, M- tutor.	8	Assignment- 4.1	CO4
Unit 5	Aptitude-III	Number System, Permutation & Combination, Probability, Set theory, Function, Non Verbal Reasoning. Data Interpretation, Syllogism.	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment- 5.1	CO5
Total				40		
Textboo	bks				·	

B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing Company Ltd., 2008.

B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher, 2005.

R K. Jain & S R K. Iyenger, Advance Engineering Mathematics, Narosa Publishing House 2002.

E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons, 2005.

Reference Books

Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning, 2007.

Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill; Sixth Edition.

Links (Only Verified links should be pasted here)

Unit 1: https://archive.nptel.ac.in/courses/111/101/111101153/

Unit 2: https://archive.nptel.ac.in/courses/111/102/111102129/

Unit 3: https://archive.nptel.ac.in/courses/111/107/111107056/

Unit 4: <u>https://archive.nptel.ac.in/courses/111/103/111103070/</u>

Unit 5: <u>https://nptel.ac.in/courses/111107058</u>

(AN AUTONOMOUS INSTITUTE)

Subject	Name: Analog Circuits	L-T-P [3-1-0]	Credit: 4
Subject	Code: BEC0302	Applicable	e in Department: ECE
Pre-req	uisites of the Subject:		
	Objective- Students will learn about AC an pplications, Different types of current mirrors	alysis of Transistors amplifiers, Power and Negative feedbas, Sinusoidal and non-sinusoidal oscillators.	ack amplifiers. Operational Amplifier
Course	Outcome (CO):		
Course	outcome: After completion of this course stu	dents will be able to:	Bloom's Knowledge Level(KL)
CO 1	Design and analyze the different transisto	r amplifier circuits.	K4
CO 2	Analyze the different power and negative	feedback amplifiers.	K4
CO 3	Design and Explain the applications of Op	perational amplifier required in electronic systems.	K ₃
CO 4	Understand and explain different types of	current mirrors used in designing of analog circuits.	K4
CO 5	Explain and analyze the different types of	sinusoidal and non- sinusoidal oscillators.	K4

Course	Content:-					
Unit	Module	Topics Covered	Pedagogy	Lecture Required (T=L+P)	Aligned Practical/Assign ment/Lab	CO Mapping
Unit 1	AC Analysis of Small Signal Amplifier	Review of BJT and FET, low frequency transistor models, estimation of voltage gain, current gain, input resistance, output resistance of single stage CE and CS amplifier, low frequency response of single and multistage amplifiers. High frequency transistor models, high frequency response of single stage and multistage amplifiers, cascode amplifier.	PPT/ White board	12=8+4	Assignment-1 Experiments – 1 to 3 and 16 to 17	CO1
Unit 2	Large Signal and Negative Feedback Amplifiers	<i>Power Amplifier:</i> Various classes of operation (Class A, B, AB, C), Figure of merits, power efficiency and linearity issues. <i>Negative Feedback Amplifiers:</i> Block diagram, Advantages, Feedback topologies: Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc.	PPT/ White board	12=8+4	Assignment-2 Experiments – 4 to 5 and 18 to 19	CO2
Unit 3	Operationa l Amplifier Application s	Review of op-amp, Inverting and Non- inverting amplifiers, Voltage follower, Adder, Subtractor, Integrator, Differentiator, Log–Anti Log Amplifiers, Precision rectifier, Comparator, Schmitt trigger. <i>Active Filters:</i> Frequency response of <i>Low</i> Pass, High Pass, Band Pass, Band Stop, and	PPT/ White board	12=8+4	Assignment-3 Experiment – 6 to 11 and 20 to 21	CO3

		All Pass Filters, advantages over passive filter, Design guidelines.				
Unit 4	Current Mirrors	<i>Current Mirrors:</i> Simple current mirror, Base current compensation current mirror, Wilson and Improved Wilson current mirrors, Widlar current source and Cascode current mirror. Design of various stages of operational amplifier.	PPT/ White board	12=8+4	Assignment-4	CO4
Unit 5	Oscillators	<i>Sinusoidal oscillators (Op-Amp Based):</i> Concept of positive feedback, Barkhausen criterion, RC oscillators (Phase shift, Wien bridge), LC oscillators (Hartley, Colpitt, Clapp). <i>Non-sinusoidal oscillators:</i> Square wave generator, Triangular wave generator, Astable multivibrator using Op-amp and IC 555.	PPT/ White board	12=8+4	Assignment-5 Experiment – 12 to 15	CO5
Referen						•
2. R	A.S. Sedra and I Robert L. Boyle	K.C. Smith, "Microelectronic Circuits," Saunder stad Louis Nashelsky," Electronic Devices and d, "Op-Amps and Linear Integrated Circuits" Pea	Circuit Theory ," Pea	rson, 11 th Edition	l.	
1. R 2. P 3. P	aul R. Gray &	nalog integrated Circuits," Umesh Publications.1 ^s Robert G. Meyer, Analysis and Design of Analog W. Hill, The Art of Electronics, 2nd edition, Ca	g Integrated Circuits,	-	Edition	
Links:						

Unit 1

- 1. BJT- Multistage Amplifier Explained (with Example)
- 2. https://www.youtube.com/watch?v=PoPBaoS-qQU
- 3. Small Signal BJT Amplifier / Single Stage Transistor Amplifier
- 4. <u>https://www.youtube.com/watch?v=5MLVr9r6Vzk&list=PL-IC1WV10E4kRdcpTfgtNjFpR8XEpDu70</u>
- 5. BJT Small Signal Analysis: Common Emitter Fixed Bias and Voltage Divider Bias https://www.youtube.com/watch?v=wbDUDRlmUuM&t=372s

Unit 2:

- 1. Principle of Feedback Amplifiers Feedback Amplifiers Applied Electronics https://www.youtube.com/watch?v=O_pqCNPs6xw&list=PLkwqJ3VB2IQ2LVf9g6NY0SNBFA2ips4ca
- 2. FEEDBACK IN AMPLIFIER | POSITIVE & NEGATIVE FEEDBACK | VOLTAGE GAIN OF A FEEDBACK AMPLIFIER | NOTES https://www.youtube.com/watch?v=GAFwUegUvNI
- 3. Types of Feedback Amplifier

https://www.youtube.com/watch?v=2fcd4jj3X2I&list=PL00WWA9f-4c-yc9uMFw7G5kKVMLCoSQp2

Unit 3:

- 1. Introduction to Operational Amplifier: Characteristics of Ideal Op-Amp https://www.youtube.com/watch?v=kiiA6WTCQn0&list=PLwjK_iyK4LLDBB1E9MFbxGCEnmMMOAXOH
- 2. Op-Amp Integrator (with Derivation and Solved Examples) https://www.youtube.com/watch?v=OPvs7A554Rw
- 3. Op-Amp Slew Rate Explained (with Examples) <u>https://www.youtube.com/watch?v=2DFIr6t1hbc&list=PLwjK_iyK4LLDBB1E9MFbxGCEnmMMOAXOH&index=9</u>

4.Op-Amp: CMRR (Common Mode Rejection Ratio)

 $\underline{https://www.youtube.com/watch?v=hpCu3HbAiWg\&list=PLwjK_iyK4LLDBB1E9MFbxGCEnmMMOAXOH\&index=10}$

Unit 4:

- 1. Concept of Current Mirror Circuit | Analog Electronics
- 2. <u>https://www.youtube.com/watch?v=QET5DHMYPXc</u>
- BJT- Current Mirror https://www.youtube.com/watch?v=VnJHXQCPIvs
- 4. Working and design of Cascode current mirror https://www.youtube.com/watch?v=qrqp1J14900

Unit 5:

- 1. How Oscillator Works ? The Working Principle of the Oscillator Explained
- 2. <u>https://www.youtube.com/watch?v=XVS8Puf4tiw</u>
- 3. RC Phase Shift Oscillator (using Op-Amp) Explained https://www.youtube.com/watch?v=Gvb4GIV5ig8
- 4. Wien Bridge Oscillator (using op-amp) Explained https://www.youtube.com/watch?v=gbUXbaxvX94

VIEW POINT POINT				INSTITUTE OF ENGINE (AN AUT HOOL OF ELECTRONIC	ONOMOUS INST	TUTE)		
Subject Nai	me: Diş	gital Syst	em Design	L-T-P [3	-0-0]		Credit: 3	
Subject Co	de: BE	C0301			Арр	licable in De	epartment: ECH	2
Pre-requisi	te of Subjec	t: Basic c	concept of number	systems, Boolean Algebra, D	Digital logic families	, BJT & MO	SFET.	
combination devices. Course Out	al and sequ	ential cir	cuits, Synchronou	olean algebra, logic function as & Asynchronous Sequent tudents will be able to:				
CO 1	Verify th	e logic op	perations and apply	y the optimization techniques	to implement logic	functions.		K3
CO2	Design a	nd analyz	e combinational lo	ogic circuits.				K4
CO3	Apply di	fferent ty	pes of flip-flops to	implement sequential circuit	s.			K4
CO4	Design a	nd analyz	e Synchronous & A	Asynchronous Sequential Cir	cuits.			K4
CO5	Explain the concept of Semiconductor Memories and implement the digital logic functions using PLDs. K4						K4	
Syllabus								
Unit No	Module Name	Тор	ic covered		Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping

Unit 1	Logic Simplificatio n and Binary Codes	Logic Simplification and Binary Codes Number Systems, Complements of Numbers, Boolean Algebra, De Morgan's Theorem, Logic Gates, SOP & POS Forms, Canonical Forms, Karnaugh Maps upto 5 Variables, Multilevel NAND/NOR realizations, Binary Codes.	PPT/ White board	12=8+4	Assignment-1 Experiments – 1 to 3	CO1
Unit 2	Combination al Logic Circuits	Combinational Logic Circuits Code Conversion, Comparators, Adders: Half Adder, Full Adder, Carry Look Ahead Adder, Subtractors: Half Subtractor, Full Subtractor, Serial And Parallel Adders, BCD Adder, Multiplexers, Demultiplexers, Encoders, and Decoders.	PPT/ White board	16=8+8	Assignment-2 Experiments – 4 to 11	CO2
Unit 3	Sequential Logic and Its Applications	Sequential Circuits Fundamentals: Basic Building Blocks of Sequential circuits like SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation and characteristics Table of all Flip Flops, Conversion from one type of Flip-Flop to another. Shift Registers, Ring and Twisted Ring Counter.	PPT/ White board	14=8+6	Assignment-3 Experiment – 12 to 14	CO3
Unit 4	& Asynchrono us Sequential Circuits	Asynchronous Sequential Circuits: Design and analysis of asynchronous sequential circuits, circuit with latches, reduction of state and flow table, race-free state assignment, hazards.	PPT/ White board	14=8+6	Assignment-4 Experiment – 15 to 18	CO4
Unit 5	ble Logic Devices	Semiconductor Memories: Basic concepts and hierarchy of Memory, Memory elements-ROM, RAM, comparison, Designing and circuit implementation using programmable logic devices: PROM, PAL, PLA, Introduction of CPLD and FPGA.	PPT/ White board	12=12+0	Assignment-5	CO5
Total				68=44+24		

Textbo	Textbooks						
Sr No	Book Details						
1.	M. Morris Mano and Michael D. Ciletti," Digital Design, 6th Edition" Pearson India 2018.						
2.	R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009						
3.	Arimathea S and S. Salivahanan," Digital Circuits and Design"						
Refere	nce Books						
Sr No	Book Details						
1.	John F Wakerly, Digital Design: Principles and Practices, Pearson, (2000).						
2.	Fundamentals of Logic Design", Cengage Learning, 5th, Edition, 2004.						
3.	A. Anand Kumar," Theory and Logic Design", PHI, 2013						
Links (Only Verified links should be pasted here)						
Unit 1	https://www.youtube.com/watch?v=juJR_JDJRa0						
https://v	www.youtube.com/watch?v=2cpl_HjcI3A						
https://v	www.youtube.com/watch?v=KergVtV3SxU						
https://v	www.youtube.com/watch?v=kgL5UaSVuro						
Unit 2:	https://www.youtube.com/watch?v=sUutDs7FFeA						
https://v	www.youtube.com/watch?v=XCiLHOZsQ18						
Unit 3:	https://www.youtube.com/watch?v=ibQBb5yEDlQ						

https://www.youtube.com/watch?v=LHAbLXfRYXk
https://www.youtube.com/watch?v=Gc3DL-tmr-g
https://www.youtube.com/watch?v=8S1kvCJRfvc
Unit 4: <u>https://www.youtube.com/watch?v=ntiv1g7G_C4</u>
https://www.youtube.com/watch?v=Qe_9CPac23c
Unit 5: <u>https://www.youtube.com/watch?v=4GpWA_hmRhw</u>
https://www.youtube.com/watch?v=p4R0Ej6FCn0&list=PLAuW6sm6dy0yRMXL47Kz4nfhB7tURK88p
https://www.youtube.com/watch?v=jrQ1YYgiOTo

(AN AUTONOMOUS INSTITUTE)

	t Name: Signals, Systems and Networks (SSN)	L-T-P [3-0-0]	Credit: 3			
Subjec	ubject Code: BEC0303 Applicable in Department					
Pre-re	quisite of Subject:					
	ation of Differential and Integral Relations.					
Basic k	Knowledge of mathematics.					
such as	ourier Transform (DTFT), Discrete Fourier Transform (DFT), Cascade/ Paral convolution, impulse/ frequency response, causality, stability of systems wil	1	pplications. Various concepts			
Cours	se Outcomes (CO)					
	se Outcomes (CO) e outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(I	KL)			
Course		Bloom's Knowledge Level(I	KL) K1			
Course CO 1	e outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(I				
Course CO 1 CO2	e outcome: After completion of this course students will be able to: Identify various signals and systems.	Bloom's Knowledge Level(I	K1			
	e outcome: After completion of this course students will be able to: Identify various signals and systems. Apply Fourier transform and convolution integral for Network analysis.	Bloom's Knowledge Level(I	K1 K2, K3			

Syllabus	Syllabus						
Unit No	Module Name	Topic covered	Pedagogy		Practical/ Assignment/ Lab Nos	CO Mapping	
1	Signal and System	Aperiodic Signals, Energy and Power Signals, Even and Odd Signals,	Lecture, Numerical Discussion	8	Assignment 1	CO1	
2	and Fourier Analysis	Linear time-invariant (LTI) systems, characterization of causality and stability of linear shift invariant systems. Fourier series representation of signals, Fourier Transforms, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Properties and Significance of CTFT,CTFT of Common Signals, Inverse CTFT. Z- Transform: Definition, Convergence of Z-transform and Properties.	Lecture, Numerical Discussion	8	Assignment 2	CO2	
3	and its application to network	Laplace Transforms- Introduction, Laplace Transforms of common signals, Theorems and properties of Laplace Transforms, Concept of Region of Convergence, Inverse Laplace Transforms, Analysis of RC	Lecture, Numerical Discussion	8	Assignment 3	CO3	
4	networks	Parameters of Two Port Networks, Relation between Parameters, Transfer Functions using Two Portnetwork Parameters, Interconnection of Two Port Networks, Reciprocal and Symmetric Networks, terminated Two Port Networks.	Lecture, Numerical Discussion	8	Assignment 4	CO4	
5		Properties of immitance functions, realizability theory: Hurwitz polynomial and positive realfunction one port network synthesis (Foster's and Cauer's form synthesis). Zeroes of transmission, Synthesis of Y21 and Z21 with 1Ω terminations.	Lecture, Numerical Discussion	8	Assignment 5	CO5	

Total		40				
Textbo	Textbooks					
Sr No	Book Details					
1.	A.V. Oppenheim, A.S. Willsky and I.T. Young, "Signals and Systems," Pearson, 2015.					
2.	Tarun Kumar Rawat, "Signals and Systems", Oxford University Press, 2010.					
3.	Franklin F. Kuo, "Network Analysis and synthesis", 2nd Edition, Wiley India Pvt. Ltd.					
4.	Charles Alexander, Matthew Sadiku, "Fundamentals of Electric Circuits" 5th edition McGraw-Hill Education					
Refere	nce Books					
Sr No	Book Details					
1.	Roberts, M.J., "Fundamentals of Signals & Systems", Tata McGraw.					
2.	R.F. Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems.					
3.	M. E. Van Valkenberg, "Network Analysis", 2nd Edition, Prentice Hall of India Ltd.					
4.	William H. Hayt, Jack Kemmerly, Engineering Circuit Analysis, McGraw Hill Education; Eighth edition	n.				
Links	(Only Verified links should be pasted here)					
Unit 1	https://nptel.ac.in/courses/117/104/117104074/					
Unit 2	2: <u>https://nptel.ac.in/courses/117/104/117104074/</u>					
https:/	//nptel.ac.in/courses/108/102/108102042/					

Unit 3: <u>https://nptel.ac.in/courses/117/104/117104074/</u>

https://nptel.ac.in/courses/108/102/108102042/

Unit 4: <u>https://nptel.ac.in/courses/117/104/117104074/</u>

https://nptel.ac.in/courses/108/102/108102042/

Unit 5: <u>https://nptel.ac.in/courses/117/104/117104074/</u>

https://nptel.ac.in/courses/108/102/108102042/

(AN AUTONOMOUS INSTITUTE)

Subject Na	me: Computational Intelligence L-T-P [3-0-0] Cro	edit: 3	
Subject Co	de: BEC 0304 Applicable in Department: E	CE	
Pre-requisi	ite of Subject: Students must have logical and practical skill set towards analyzing various problems related to algorithm	ms.	
Computatio as Artificial network lea experience	jective : The purpose of this course is to provide an introductory understanding of the fundamental principles, technola Intelligence. By the end of the course, students will gain knowledge in designing intelligent systems and grasp the I Neural Networks, Fuzzy Logic, and Genetic Algorithms. Additionally, students will acquire the necessary mathematic arning. Moreover, through engaging in a research or design project, students will develop familiarity with current rein utilizing research methods within the field of Computational Intelligence.	key concepts in a al skills to optim	areas such ize neural
Course out	come: After completion of this course students will be able to:	Bloom's Ku Level(K)	nowledge
CO 1	Identify Computational Intelligence techniques and their applications.	K1	
CO2	Apply neural networks using various learning techniques and Formulate the artificial neural network with their differen layers.	t K3	
CO3	Compare the fuzzy sets and crisp sets and apply fuzzy operations in real life problems.	K2	
CO4	Design fuzzy controller with the help of fuzzy rules, fuzzyfications and defuzzification.	К3	
CO5	Discuss the concept of genetic algorithm and its various applications.	K4	
Syllabus		1	

Unit No	Module Name	Topic covered P	Pedagogy		Practical/ Assignment/ Lab Nos	CO Mapping
Unit 1	Introduction to Computational Intelligence	Introduction to Computational Intelligence, Various types of Computational Intelligence Techniques, Characteristics of Computational Intelligence, Major Areas of Computational Intelligence, Applications of Computational Intelligence. Introduction to MATLAB / Python Environment for Computational Intelligence Techniques.		8hrs	Assignment	CO1
Unit 2	Neural Networks	Neuron, Biological neurons and its working, Model of Artificial Neuron Architectures, Taxonomy of ANN Systems, Various Activation Function Single Layer ANN System, Multi-Layer ANN System, Recurrent networks. Supervised Learning, Unsupervised Learning, Reinforcement Learning, Perceptron, Adaline, Madaline, and Applications of ANN in research. MATLAB Neural Network Toolbox / Python.	ns, PPT, Test,	8hrs	Assignment	CO2
Unit 3	Fuzzy Logic-I	Fuzzy Set theory, Operations on sets, Properties, Fuzzy versus Crisp set, Fuzzy Relation, Operations on Fuzzy Relation, Properties, Fuzzy versus Crisp Relations, Introduction & features of membership functions, Max- Min Composition	PPT, Test,	8hrs	Assignment	CO3
Unit 4	Fuzzy Logic-II	Introduction to Fuzzy logic, Propositions, If-Then Rules, implications an inferences. Rule based systems, Predicate logic, Fuzzy Inference System Fuzzification, Defuzzification Method, logic controller design, Some applications of Fuzzy logic. Fuzzy Logic MATLAB Toolbox/Python		8hrs	Assignment	CO4
Unit 5	Genetic Algorithm (GA)	Fundamentals of Genetic Algorithms, Basic concepts, Working Principle Various Encoding methods, Fitness function, GA Operators- Reproducti Crossover, Mutation, Convergence of GA, Bit wise operation in GA, Optimization of traveling salesman problem using Genetic Algorithm, Genetic Algorithm MATLAB Toolbox/Python, Hybrid Computational Intelligence		8hrs	Assignment	CO5
Total				40		

Textbooks	
Sr No	Book Details

1.	Computational Intelligence: An Introduction, Andries P. Engelbrecht, Wiley Publication.			
2.	S. Rajsekaran & GA Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications",			
	Prentice Hall of India.			
3.	Siman Haykin, "Neural Netowrks", Prentice Hall of India			
4.	Timothy J. Ross, "Fuzzy Logic with Engineering Applications", Wiley India.			
Reference Boo	oks			
Sr No	Book Details			
1.	Kumar Satish, "Neural Networks", Tata Mc Graw Hill			
2. Fakhreddin O. Karray, Clarence W. De Silva, "Computational Intelligence and Intelligent System Design: Theory To applications", Pearson				
3.	E Horowitz, S Sahni, S Rajasekaran, Fundamentals of Computer Algorithms, Universities Press.			
Links (Only V	Verified links should be pasted here)			
Unit 1				
	zxNztA?si=DiEQ7L2PNrQvgC5y			
Unit 2:				
Unit 3:	com/watch?v=xbYgKoG4x2g&list=PL53BE265CE4A6C056			
	com/watch?v=K7S3TgfqnX0&list=PLFW6lRTa1g81F7CJ-CdlsyWKKAa43T62j			
Unit 4:				
- ·	com/watch?v=JrRWdPvG7yk&list=PLFW6lRTa1g81F7CJ-CdlsyWKKAa43T62j&index=2			
Unit 5:				
https://www.youtube.c	com/watch?v=d86McbWXh4E&list=PLwdnzlV3ogoWyi7exLIe26JhueiVQXq_S			

(AN AUTONOMOUS INSTITUTE)

Subject Name	: IoT Workshop-I L-T-P [0-0-6] Credit: 3							
Subject Code:	BEC0355 Applicable in Department: ECE							
Pre-requisite	of Subject: Basics of IoT							
solution related	Trse Objective- The concept of IoT and its key elements. The different IoT System Architectures and Standards including latest computing paradic concepts of IoT hardware platform and the sensors. The concept of various types of IoT protocols and communication technologies. Various issue ation related to IoT Security and future trends of IoT. Course Outcomes (CO)							
Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(K)						
CO 1	Explain the key elements of an IoT device along with opportunities and risk associated with IoT adoption.	K1						
CO2	Describe the implementation of the different IoT System Architectures and Standards including latest computing paradigm	^L K1, K2						
CO3	Describe the use of various IoT hardware platforms and sensors.	K1, K2						
CO4	Explain the concept and use of various IoT protocols and communication technologies.	K1, K2						
CO5	Analyze challenges, and issues related to IoT Security and apply IoT on social society problems.	K1, K2, K5						

Course	Content:-					
Unit	Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assi gnment/Lab	CO Mapping
Unit 1	Introduction to IoT and its basic fundamental	Introduction to IoT and its Characteristics, IoT Architectures and its Physical & Logical Design, Enabling Technologies in IoT, M2M Communication, Basics of Computer Networking and its Topologies, OSI Model, TCP/IP Protocol Suite. Introduction to Integrated Developed Environments	PPT, Test, Quiz	8hrs	Assignment	CO1
Unit 2	Hardware and Sensor Networks	Definition, Types of Sensors, Types of Actuators, Examples and Working, IoT Development Boards: Arduino IDE and Board Types, Raspberry Pi Development Kit, RFID Principles and components, Wireless Sensor Networks: History and Context, The node, Connecting nodes, Networking Nodes, WSN and IoT.	PPT, Test, Quiz	8hrs	Assignment	CO2
Unit 3	Arduino and Raspberry pi Programming	Arduino IDE coding, Libraries, Arithmetic addition in IDE, Interfacing with Raspberry Pi, Node MCU, ARM Processor Families, Main Features of M4 Processor, ADC and DAC Conversion Techniques.	PPT, Test, Quiz	8hrs	Assignment	СОЗ
Unit 4	IoT Security and Protocols	Wireless Technologies for IoT: WPAN Technologies for IoT: IEEE 802.15.4, Zigbee, HART, NFC, Z-Wave, BLE, Bacnet, Modbus. IP Based Protocols for IoT IPv6, 6LowPAN, RPL, REST, AMPQ, CoAP, MQTT. Edge connectivity and protocols, IoT Security, Threat Modelling.	PPT, Test, Quiz	8hrs	Assignment	CO4
Total			I	40hrs	1	1

5. No.	Торіс	Program Logic Building	CO Mapping
1	Arduino IDE	Study of IDE and practice of its installation.	CO 1
2	Arduino Board	Create a traffic light signal with three colored lights (Red, Orange and Green) with a duty cycle of 5-2-10 seconds.	CO 2
3	Arduino Board	Simulation of 4-Way Traffic Light with Arduino	CO 2
4	Arduino Board	Working with Adafruit Libraries in Arduino.	CO 2
5	Raspberry Pi	Connect an LED to GPIO pin 25 and control it through the command line.	CO 2
6	Sensors	The state of LED should toggle with every press of the switch Use DHT11 temperature sensor and print the temperature and humidity of the room with an interval of 15 seconds.	CO 2
7	Libraries	To study Libraries and their installation.	CO 3
8	Actuators	To interface a servo motor with an Arduino board and control its position using PWM signals.	CO 3
9	Actuators	To learn how to interface a DC motor with an Arduino board and control its speed and direction.	CO 3
10	Actuators	To understand how to interface a relay with an Arduino board and control external devices.	CO 2
11	Actuators	To understand how to interface a stepper motor with an Arduino board and control its rotation.	CO 3
12	Sensors	To detect the presence of LPG or propane gas using the MQ-6 gas sensor and Arduino.	CO 3
13	Raspberry Pi	Study and Installation of Raspberry Pi.	CO 3
14	Raspberry Pi	Displaying different LED Patterns with Raspberry Pi.	CO 3
15	Raspberry Pi	Programming of available GPIO Pins of the corresponding device using native programming language. Interfacing LED and testing the functionality.	CO 3

16	Communication Protocols	To explore BLE communication and data exchange.	CO 4			
17	Applications of IoT	Home automation system	CO 5			
18	Applications of IoT	Health care system	CO 5			
19	Applications of IoT	Smart Irrigation System	CO 5			
20	Applications of IoT	Electric Piano	CO 5			
Text Book	s:					
Sabrie Solo	oman," Sensors Hand	book", Second Edition Jan 2010.				
A.K. Sawh	ney," Sensors and In	strumentation" Dhanpat Rai & Co. 2014.				
Michael M	liller, "The Internet of	f Things" Pearson. 1st Edition March 2015.				
Reference	Books:					
Simon Mo	nk, "Raspberry Pi Co	okbook", O'Reilly, Fourth Edition 2022.				
Brian Jeps	on, Michael Margoli	s, Nicholas Robert Weldin," Arduino Cookbook: Recipes to Begin, Expand, and Enhance Your	Projects" O'Reilly, Third			
Edition 202	20.					
Links:						
Unit 1						
	w.voutube.com/watch	n?v=APH6Nrar27w&list=PLYwpaL_SFmcB8fDd64B8SkJiPpEIzpCzC.				
-	•	n?v=GfaHdjApnhU&t=329s				
-	w.youtube.com/watcl					
Unit 2:	-					
https://ww	w.youtube.com/watch	n?v=IIf7zH5cIX8&list=PL911quAVmESBqKLU0Tn5gRVXVyW5KLgCa				
•	w.youtube.com/watcl					
-	•	n?v=Ukfpq71BoMo&t=327s				
Unit 3:						
	https://www.youtube.com/watch?v=nbD_V4QtNvY					
-	https://www.youtube.com/watch?v=2HY0pkMtYek					
	https://www.youtube.com/watch?v=HicZcgdGxZY&list=PLwjK_iyK4LLCnW-df53d-6yYrGb9zZc					

Unit 4:

https://www.youtube.com/watch?v=Yrp4LU5n7mc https://www.youtube.com/watch?v=CR-WLHLz-es https://www.youtube.com/watch?v=byNUw43CQrU&t=3s

Unit 5:

https://www.youtube.com/watch?v=-SHjXavvAZQ https://www.youtube.com/watch?v=12BiFNIVs6I https://www.youtube.com/watch?v=gguZWsR449g

(AN AUTONOMOUS INSTITUTE)

SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING

LAB NAME: Analog Circuits Lab

L-T-P [0-0-4]

Credit: 2

LAB CODE: BEC0352

Applicable in Department: ECE

Lab Experiments	Credit: 2	
Course Objective: C	ourse Objective: Students will learn about,	
1. Designing, impleme	entation and verification of various characteristics of transistor amplifiers.	
2. Design and implem	entation of various applications of Op-amp.	
3. Design and implem	entation of oscillators.	
4. Simulation of Elect	ronic circuits on simulation software.	
5. Introduction and cir	cuit design by PCB design software (PCB Express, Ki cad).	
Course Outcomes (C	0)	
Course outcome: Aft	er completion of this course students will be able to:	Bloom's Knowledge Level (KL)
CO 1	Design and plot frequency response of amplifiers	K4
CO2	Design and verify Op- Amp base circuits.	K4
CO3	Design and implementation of oscillators.	K4
CO4	Simulate the Electronic circuits on simulation software.	K3
CO5	Design and implement electronics circuits by PCB design software (PCB Express, Ki cad).	K4

Sr. No.	Program logic Building	СО		
	Design and implement a CE (BC-107) amplifier with potential divider biasing (for $V_i = 20 \text{ mV}$, $R_1=100K\Omega$ $R_2=10K\Omega$, $R_C=4.7 \text{ K}\Omega$, $R_E=1K\Omega$). Verify the following parameters with the theoretical values:	CO1		
1	 (i) Voltage gain Av (ii) Current gain Ai (iii)Input Resistance (Ri) (iv)Output Resistance (Ro) 			
2	 Design and analysis of Single stage common source MOSFET amplifier with potential divider biasing (for V_i = 20 mV, R₁=1MΩ R₂= 1KΩ, R_D= 4.7 KΩ, Rs= 1KΩ) and Plot Gain (dB) Vs frequency curve, also measure following parameters (i) Bandwidth (ii) Input impedance (iii) Maximum signal handling capacity (MSHC). 	CO1		
3	Design a single-stage CE and a multistage (CE-CE) amplifiers with Voltage Divider Bias for 10 mV input ac signal and plot the Frequency Response curves using BC 547, $V_{CC} = 12V$, Stability factor (S) =10 and $R_L = 10 \text{ K}\Omega$. Observe the effect on gain and bandwidth.	CO1		
4	Design current series/Voltage shunt Feedback amplifier with basic voltage gain 100 and feedback factor 0.1-0.2 also analyze the effect of feedback on gain, bandwidth input and output impedance.			
5	Design Voltage series Feedback amplifier with basic voltage gain 100 and feedback factor 0.1-0.2 also analyze the effect of feedback on gain, bandwidth, input and output impedance.			
6	 Design and analyze the output voltage V₀ for OP-AMP (IC 741) as: (i) Inverting and Non-inverting amplifier for input voltage 0.5V with input Resistance (R_i) of 10 KΩ and feedback Resistance (R_f) of 100 KΩ. Voltage follower circuits for input voltage 1V. 			

7	Design a differential amplifier with ±12V DC power supply and calculate Common mode gain, differential mode gain, CMRR and slew-rate.	CO2
8	Design and analyze OP-AMP applications as a difference amplifier, integrator and differentiator Circuits for 1 KHz input signal.	CO2
9	Draw the input and output waveforms of a given full wave precision rectifier.	CO2
10	Design and implement of 2 nd order Active Low pass filter for cut-off frequency 1KHz and pass band gain of 1.586, also draw the frequency response curve and verify cutoff frequency.	
11	Design and implement of 2 nd order Active High pass filter for cut-off frequency 1KHz and pass band gain of 1.586, also draw the frequency response curve and verify the cutoff frequency.	
12	 Design the following RC sinusoidal oscillators; Also verify the theoretical and practical Oscillating frequency. (i) RC phase shift oscillator, if its frequency of oscillation is 955 Hz and R₁=R₂=R₃=680KΩ. Wien bridge oscillator uses R=4.7KΩ, C=0.01µF, and R_F=2R₁ 	CO3
13	 Design the following LC oscillators; Also verify the theoretical and practical Oscillating frequency. (i) For a Hartley oscillator, self-inductance of the two coils are L₁=100mH, L₂=1mH and mutual inductance between the two coils is 20µH. its output for a capacitor of value 20pF. For a Colpitts oscillator in which feedback network consists of two capacitors of 100 pF and 20 pF with 100 mH coil across these capacitors. 	CO3
14	Design and implement square wave generator (Astable Multivibrator) for 1 KHz using, (i) Op-amp (ii) IC 555.	
15	Design and implement a triangular wave generator using dual op-amp, for oscillation frequency $f_0 = 1.5$ KHz and Vout (P-P) = 6V, use Vsat = 13.5 V.	CO3
16	Design and simulate single-stage CE amplifiers with Voltage Divider Bias for 10mV input ac signal and plot the Frequency Response curves using BC 547, V_{CC} = 12V, Stability factor (S)=10 and R_L = 10 K Ω . (<i>TARGET, PSPICE-1</i> etc.)	CO4
17	Simulation of Multistage stage (CE-CE) amplifier (designed in experiment1) using any available simulation software and also find the Voltage gain, Input impedance, Output impedance, and bandwidth. (<i>TARGET, PSPICE-1</i> etc.)	CO4
18	Design and simulate current series/Voltage shunt Feedback amplifier with basic voltage gain 100 and feedback factor 0.1- 0.2 also analyze the effect of feedback on gain and bandwidth.	CO4
19	Design and simulate Voltage series Feedback amplifier with basic voltage gain 100 and feedback factor 0.1-0.2 also analyze the effect of feedback on gain and bandwidth.	CO4

20	Design and simulate of 2 nd order Active Low pass filter for cut-off frequency 1KHz and pass band gain of 1.586, also draw the frequency response curve and verify the cutoff frequency.	CO4
21	Design and simulate of 2 nd order Active High pass filter for cut-off frequency 1KHz and pass band gain of 1.586, also draw the frequency response curve and verify the cutoff frequency.	CO4
22	Introduction of PCB design software (PCB Express, Ki cad).	CO5
23	Identification of various types of Printed Circuit Boards (PCB) and soldering Techniques.	CO5
24	PCB Lab: Artwork & printing of a simple PCB.	CO5
25	Etching & drilling of PCB.	CO5
26	Wiring & fitting shop: Fitting of power supply along with a meter in cabinet.	CO5
27	Mini Project: Design a mini project using the applications of this Lab.	CO5

(AN AUTONOMOUS INSTITUTE)

LAB NA	AME: Digital System Design Lab	L-T-P [0-0-2]	Credit: 1	
LAB CODE: BEC0351Applicable in Department: ECE				
Course circuits.	Objective: The student will learn about verification	on of truth table, designing and verifica	tion of combinational circuits, flip-flops and sequential	
Course	Outcomes (COs)			
Course	outcome: After completion of this course students	will be able to:	Bloom's Knowledge Level(KL)	
CO 1	Verify truth table of various type of Logic Gates.		K2	
CO2	Design, implement and verify combinational logi	c circuits.	K4	
CO3	Implement and verify truth table of various types	of flip-flops.	K4	
CO4	Design and implement different types of sequenti	ial logic circuits.	K4	
List of I	Practical			
a N			СО	
Sr No	Program Title		Mapping	
1	Verification of the truth tables of Basic Logic Ga AND (7408) OR (7432) NOT (7404)	ates and Universal Logic Gates using TI	ΓL ICs. CO1	

	NAND (7400)	
	NOR (7402)	
2	Implementation of the given Boolean function using TTL Logic Gates (NOT, AND and OR Gates) in SOP for following Boolean expressions:	C01
	Y1 = AB' + A'B	
	Y2 = ABC + A'B'C' + A'C	
	$F(A,B,C,D) = \sum (0,2,5,7,8,10,13,15)$	
3	Implementation of the given Boolean function using TTL Logic Gates (NOT, AND and OR Gates) in POS forms for following	CO1
	Boolean expressions:	
	Y1 = (A'+B)(A+B')	
	Y2 = (A+B+C)(A'+B'+C')(A'+C)	
-	F(A,B,C,D) = M(0,2,5,7,8,10,12,15)	~~ •
4	Implement and verify	CO 2
	4-bit Binary to Gray code converter and 4-bit Gray to Binary on de converter	
	4- bit Gray to Binary code converter.	
5	Implementation of Half-adder, Full-adder and Full-adder using two Half-adder with TTL Logic Gates (EXOR-7486, AND-7408,	CO 2
	OR-7432) and verify its truth table.	
6	Implementation of Half-subtractor, Full-subtractor and Full-subtractor using two Half-subtractor with TTL Logic Gates (EXOR-	CO 2
	7486, AND-7408, OR-7432) and verify its truth table.	
7	Implementation of 4-bit Parallel adder using 7483 IC and verify the outputfor the given inputs.	CO2
	A = 1011, B = 1001	
	A = 0011, B = 0010	
8	Implementation of 2:4 Decoder, 1:4 Demultiplexer using Logic Gates (NOT gate- 7404, AND gate- 7408) and verify its truth	CO2
	table.	
9	Implementation of 4:2 Encoder, 4:1 multiplexer using logic gate (OR gate-7432) and verify its truth table.	CO2
10	Implement and verify $F(A, B, C) = \sum (3, 5, 6, 7)$ using	CO 2
	8:1 multiplexer.	
	4:1 multiplexer.	
11	Implement 2 Bit magnitude comparator using logic gates and verify the truthtable.	CO 2
12	Verification of truth table of flip-flop using NAND gate (7400) & NOR gates (7402).	CO 3

	RS Flip Flop	
	JK Flip Flop	
	D Flip Flop	
	T Flip Flop	
13	Implement D flip flop using SR flip flop and verify the truth table.	CO 3
14	Design and implement 4-bit ring counter using D flip flop and verify the result.	CO 3
15	Design MOD 5 asynchronous counter using T flip flop and verify the truth table.	CO 4
16	Design MOD 5 synchronous counter using T flip flop and verify the truth table.	CO 4
17	Realize the following:	CO 4
	Design Mod – N Synchronous Up Counter & Down Counter using 7476 JK Flip-flop	
	Mod-N Counter using IC7490 / 7476	
	Synchronous counter using IC74192	
18	Design Pseudo Random Sequence generator using 7495.	CO4

(AN AUTONOMOUS INSTITUTE)

SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING

Branch- B.TECH. (CSE/IT/CSE(R)/AI/AIML/DS/CYS/IOT/CS/EC/ME/BT)/M. Tech (Int.)		
	L-T-P [2-0-0]	Credit: NA
Subject Code- BNC0301/BNC0401		
Subject Name- Artificial Intelligence and Cyber Ethics		

Pre-requisite of Subject: Basic understanding of computer systems and ethics.

Course Objective- The course aims to foster critical thinking about ethical issues, promote responsible use of technology, and ensure students can identify, analyze, and address ethical dilemmas in AI and cyber domains.

Course Outcome – After completion of this course students are able to:

CO1 - Learn key principles of AI ethics, summarizing ethical considerations and applications in AI development and deployment.

CO2- Apply policies and framework for Fairness in AI and Machine Learning.

CO3- Apply privacy and security concepts, risk management and regulatory compliance in the field of AI and Cyber Security.

CO4- Understand the nature of cybercrimes, the principles of intellectual property rights (IPR), and the legal measures necessary to address and prevent these issues.

CO5- Describe the impact of AI in Society, employment and workforce.

Course Content

Unit No	Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assig nment/Lab	CO Mapping
Unit 1	An overview to AI Ethics	Definition of AI. Ethical principles in AI. Sources of AI data. Legal implications of AI security breaches, Privacy and AI regulations. Key Principles of responsible AI, transparency and accountability, Dual-use dilemma, Human-centric design. Introduction to Cyber Laws and Ethics, Historical development of cyber laws, Legal frameworks.	Lecture and Case studies	5	Assignment	CO1
Unit 2	Fairness and Favoritis m in Machine Learning	Introduction to Fairness and Bias in AI, Types of Fairness and Bias. Impact of Bias and Fairness in AI, techniques for measuring Fairness and Bias. Techniques for mitigating bias. Current policies and frameworks for fairness in AI. Bias in data collection, Fairness in data processing. Generative AI, Types of Bias in Generative AI.	Lecture and Case studies	6	Assignment	CO2
Unit 3	AI Ethics and Cybersec urity Principles	 Importance of privacy and security in AI, AI specific security tools and software, privacy-preserving machine learning (PPML) and privacy-preserving data mining (PPDM) Ethical considerations in phases of AI development life cycle, Risk management: Risk assessment and incident response Regulatory compliance: GDPR, HIPAA Case studies: Implementation of AI ethics guidelines and best practices in engineering projects, Ethical decision-making processes and tools for engineers working with AI technologies 	Lecture and Case studies	8	Assignment	CO3
Unit 4	Cybercri mes, IPR and Legal Measures	Types of cybercrimes and their impact, Legal measures for cybercrime prevention and prosecution. IPR: Copyrights, trademarks, patents, and trade secrets, Ethical implications of intellectual property, Cyber security and privacy issues	Lecture and Case studies	5	Assignment	CO4

Unit 5	AI Contribut ion to Social Evolution	Positive and negative political impacts of AI, Role of AI in social media and communication platforms, AI-generated content and deepfakes, Applications of AI in addressing global challenges, Key technical stakeholders in AI deployment: developers, researchers, policymakers, Technical Impacts on Employment and Workforce: Automation technologies: robotic process automation (RPA), autonomous systems	Lecture and Case studies	6	Assignment	CO5		
Referen	nces-	· · · · · ·			·			
Text Bo	ooks:							
		Formation Security and Cyber Laws, Simplified Chinese Editions the Path for Responsible Machine Learning, Shivanand Ku		h Tripathi, I	Ritendra Goel, 1 J	anuary ,2014		
Refere	nce Books:							
1. AI E'	THICS (The]	MIT Press Essential Knowledge series), by Mark Coeckelberg	gh, 2018					
2. Com	puters, Intern	et and New Technology Laws by Karnika Seth – by Karnika						
Links:								
Unit 1	https://www.y	youtube.com/watch?v=VqFqWIqOB1g						
Unit 2:	Unit 2: <u>https://www.youtube.com/watch?v=hVJqHgqF59A</u>							
Unit 3:	Unit 3: <u>https://www.youtube.com/watch?v=O5RX_T4Tg24</u>							
Unit 4:	Unit 4: <u>https://www.youtube.com/watch?v=RJZ0pxcZsSQ</u>							
Unit 5:	Unit 5: <u>https://www.youtube.com/watch?v=I9FOswjTSGg</u>							

(AN AUTONOMOUS INSTITUTE)

Subject	t Name: ENGINEERING MATI	IEMATICS-IV	L-T-P [3-1-0]	Credit: 4
Subject	t Code: BAS0402	Applicable in Department:	CSE/CS/IT/CSE-R/M.Tech.(Int.)((CSE)/IOT/ECE
Pre-rec	uisites of the Subject: Knowledg	e of Mathematics I and II of B. Tech or e	equivalent.	
concept	s and tools at an intermediate to su	purse is to familiarize the students with st perior level that will provide them well	1 1	
	e Outcome (CO) outcome: After completion of this	acurse students will be able to:		Bloom's
Course	outcome: After completion of this	course students will be able to.		Knowledge Level(KL)
CO 1	Understand the concept of corre	lation, moments, skewness and kurtosis	and curve fitting.	K1, K2
CO 2	Apply the concept of hypothesis	testing and statistical quality control to	create control charts.	K1, K3
CO 3	Remember the concept of proba	bility to evaluate probability distribution	18.	K1
CO 4	Understand the concept of Math	ematical Expectations and Probability D	Distribution.	K2
CO 5	Solve the problems of Time & V	Vork, Pipe & Cistern, Time, Speed & Di	stance, Boat & Stream, Analogy.	K3
Syllabu	IS			

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical / Assignm ent/ Lab Nos	CO Mapping
Unit 1	Statistical Techniques-I	Introduction: Measures of central tendency: Mean, Median, Mode, Moment, Skewness, Kurtosis, Curve Fitting, Method of least squares, Fitting of straight lines, Fitting of second degree parabola, Exponential curves, Correlation and Rank correlation, Linear regression, nonlinear regression and multiple linear regression	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignm ent -1	CO1
Unit 2	Techniques- II		Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignm ent-2	CO2
Unit 3	Variable	Random Variable: Definition of a Random Variable, Discrete Random Variable, Continuous Random Variable, Probability mass function, Probability Density Function, Distribution functions. Multiple Random Variables: Joint density and distribution Function, Properties of Joint Distribution function, Marginal density Functions, Conditional Distribution and Density, Statistical Independence, Central Limit Theorem (Proof not expected).	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignm ent-3	CO3
Unit 4	Expectations and Probability Distribution	Operation on One Random Variable – Expectations: Introduction, Expected Value of a Random Variable, Mean, Variance, Moment Generating Function, Binomial, Poisson, Normal, Exponential distribution.	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignm ent-4	CO4
Unit 5	Aptitude-IV	Time & Work, Pipe & Cistern, Time, Speed & Distance, Boat & Stream, Sitting arrangement, Analogy.	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignm ent-5	CO5
Total				40		

(AN AUTONOMOUS INSTITUTE)

Subje	ct Name: Technic	al Communication	L-T-P [2-]	[-0]	Credit	: 3
Subje	ct Code: BASL040	1				
Appli	cable in Departme	nt: CSE, CSE (R), IT, DS, IoT, AI, AIML, CS, BT, EC, CYS	S, & ME			
Pre-re	equisite of Subject	B2 (CEFR level) in the Core Skills test; B1/B2 in the Speak	ing and Writing test	S		
		evelop communication and critical thinking skills necessary for and help the students communicate effectively, creatively, ac			nd ever-changi	ng workplace
Course	e Outcome (CO)					
Cours	e outcome: After c	ompletion of this course students will be able to:				Bloom's Knowledge Level(KL)
CO 1	Comprehend the pr	inciples and functions of technical communication.				К2
CO2	Write for a specific	audience and purpose to fulfil the provided brief.				K5
	2 1	e different kinds of technical documents.				K2, K3
CO4	Apply effective spe	aking skills to efficiently carry out official discourses.				К3
CO5	Demonstrate under	standing of communication through digital media.				К5
Syllab	ous					
Unit No	Module Name	Topic covered	Pedagogy	Require	Practical/	CO Mapping
1	Introduction to Technical Communication	Definition, Process, Types, Levels, Flow and Barriers to Technical Communication with emphasis on cultural differences and gender sensitivity. Gender-neutral language. Need for and Importance of Technical Communication -	Interactive & Flipped classroom method	5	Assignment 1	CO1

			Significance of audience in technical communication Tone-				
			Formality and Informality				
Textbo							
Sr No	Technic	al wruing Book Dela	retters/emails Types and format, Content Organization	Interactive &			
2	1	_ 0 0 11 _ 0 00	Cultural Variety, I one, and Intention Bad news message,	Flipped classroom	10	Assignment 2	CO2
4							
	1	Technical	Konnes, iggina, and incines and meaning by appreadshi Rai	nan & Sangeeta Sr	iarma, 4	h Edition, Oxf	ord University
	1.		CNeand Resume'				
	Technic	al Writing	Technical reports – types & formats Structure of a report				
Refere	ence Boo	oks					
a			commean selename paper writing		E.		
Sr No		Book Deta	lis				
				Interactive			
_	Public S	Peaking Rechnical	Components of effective speaking. Seminar and conference communication: A Practical Guide by William S. Pieffer and presentation Conducting/ participating in meetings Appearing for a job interview.	Kave A. Adkins, P	earson, 2	020, UK.	
4			presentation Conducting/ participating in meetings Appearing	activities mock	8 ´	Assignment 4	CO4
	2	The Eccent	for a job interview als of Technical Communication by Elizabeth Tebeaux and S	interviews Outord	Linivor	try Drago 2021	UV
	Z	The Essent	and S Enzadeth Tedeaux and S	attriblagga, Oxford	Univers	ity Press, 2021	, U K .
	3	Technical (Understanding remote work using different online ommunication Today by Kichard sonnson-Sheenan, Pearson, platforms	2020. UK			
	_		platforms	,,			
		Remote	Virtual etiquette email ids, usernames Developing online	Interactive			
5	Ċommu		winnenicatiospin Techeitab Bro Wisiens "phyl Sukeal K. Willer-Onot to write on social media. Participating in online	Interactive ochran and Jason sessions, activities	Гhan⊗a, R	oAtleiggan2A2O,	UK.CO5
	5		Vanifegensee/ngminessensetings Mobile in omne	MaCrowy II:11, 2020			
	5	rechnical	whithg to engineers or selentists by milehenere w. Z. Hollies,	McGraw Hill, 2020), US.		
Total	0		Second Language Acquisition, from Theory to Practice by	William Littlewoo	d, 86 am	ridge Universi	ty Press, 2022,
		UK.					
	7	The Writi	ng Revolution: A Guide to Advancing Thinking Throug	the Writing in All	Subject	s and Grades	by Judith C.
			and Natalie Wexler, Jossey-Bass, 2022, USA.				J
		internation	anu matante menter, 3055ey-Da55, 2022, 05A.				

(AN AUTONOMOUS INSTITUTE)

Subje	ect Name: Analog and Digital Communication	L-T-P [3-0-0]	Credit: 3			
Subje	Subject Code: BEC0401 Applicable in Department: ECE					
Pre-re	equisite of Subject: Basis knowledge of Communication System.					
applic of a d comm	se Objective : This course is Fundamentals of amplitude modulation (AM) cation. Fundamentals of amplitude modulation (AM) and angle modulation and ligital communication system in presence of noise in terms of the signal-to-no nunication system. The concept and basics of information theory and the basics of tion & correction using different coding schemes in digital communication.	l demodulation techniq bise ratio and bit-error-	ues and its application -rate and the concept of	a. The performance of spread spectrum		
Cours	se Outcome(CO):					
Cours	se outcome: After completion of this course students will be able to:			Bloom's Knowled ge Level (KL)		
CO1	Explain various modulation and demodulation methods of Amplitude Modula	tion and Angle Modula	ation.	K1, K2		
CO2	Implement various digital modulation techniques.			K2, K3		
CO3	Analyze the effect of noise and explain the concept of spread spectrum comm	unication system.		K2, K4		
CO4	Analyze the effect of noise and explain the concept of spread spectrum comm	unication system.		K3,K4		
CO5	Characterize error-control codes and apply the encoding and decoding process	ses.		K4, K5		
Syllat	bus			I		

Unit No	Module Name	Topic covered	Pedagogy	d	Practical/ Assignment/ Lab Nos	CO Mapping
1	Analog Modulation	Introduction to Communication system, Need for modulation, Amplitude Modulation and Demodulation, Angle Modulation: Frequency and Phase Modulation and Demodulation, Frequency Division Multiplexing (FDM).	Lecture, Numerical Discussion, Hands- on Exercises, Demo, Hands-on Lab	8	Assignment/Practical 1 to 2 /Quizzes	CO1
2	Digital Modulation	Sampling Theorem, Pulse Code Modulation (PCM), Time Division Multiplexing (TDM) Digital Communication System: Line coding, Binary ASK, FSK & PSK Modulation and Demodulation, Differential phase shift keying (DPSK), Quadrature phase shift keying (QPSK).	Lecture, Numerical Discussion, Hands- on Exercises, Demo, Hands-on Lab	8	Assignment/Practical 3 to 10 /Quizzes	CO2
3	Digital Receiver	Noise, Signal to Noise Ratio (SNR), Figure of Merit, Noise Figure. Concept of Matched Filters, BER analysis of BASK, BFSK, BPSK. Spread Spectrum Communication : Frequency Hopping Spread Spectrum (FHSS), Direct Sequence Spread Spectrum (DSSS).	Lecture, Numerical Discussion, Hands- on Exercises, Demo, Hands-on Lab	8	Assignment/Practical11 to 13 /Quizzes	CO3
4		Measure of information: Information, Entropy; Types of Channels, Source encoding: Shannon Fano Coding, Huffman Coding, Capacity of Additive White Gaussian Noise (AWGN) Channel: Shannon Hartley Law	Lecture, Numerical Discussion, Hands- on Exercises, Demo, Hands-on Lab	8	Assignment/Practical 14 to 15/Quizzes	CO4
5	Error correcting codes	Error Correcting codes: hamming sphere, hamming distance and hamming bound, relation between minimum distance and error detecting and correcting capability, Linear block codes: encoding and syndrome decoding. Convolution coding and decoding.	Lecture, Numerical Discussion, Hands- on Exercises, Demo, Hands-on Lab	8	Assignment/Practical 16/Quizzes	CO5
Total	1	I	I	40		

Textbook	s
Sr No	Book Details
1.	Herbert Taub and Donald L. Schilling, "Principles of Communication Systems", Tata McGraw Hill.
2.	B.P. Lathi, "Modern Digital and Analog communication Systems", 4th Edition, Oxford University Press, 2010.
Reference	e Books
Sr No	Book Details
1.	Simon Haykin, "Communication Systems", 4th Edition, WileyIndia.
2.	H.P.Hsu& D. Mitra "Analog and Digital Communications", 2nd Edition, Tata McGraw- Hill.
Links (O	nly Verified links should be pasted here)
Unit 1	https://www.youtube.com/channel/UCnWGGUyQOZkXylsoI5w-J4Q https://youtu.be/UznnkHMisIk
Unit 2	https://nptel.ac.in/courses/117/101/117101051/ https://www.youtube.com/watch?v=m4sjTt7rhow&feature=youtu.be https://youtu.be/ZW1glqkIgcw
Unit 3	https://www.youtube.com/watch?v=DVehz1WW_dA&feature=youtu.be https://www.youtube.com/watch?v=XkpdX6j9p2I&feature=youtu.be https://youtu.be/yWWfKrbMRUs
Unit 4	https://youtu.be/7fzzg0xgNrk
Unit 5	https://youtu.be/AcgGdaRArX4

(AN AUTONOMOUS INSTITUTE)

Subjec	et Name: (CMOS Digital Integrated Circuit	L-T-P [3-0	-0]	Credit: 3		
Subjec	Subject Code: BEC 0403 Applicable in Department: ECE						
Pre-re	quisite of	Subject: Basis knowledge of MOSFET and Digital Electronics					
knowle	edge of bas	e : The students will learn about the basics of MOS device, CMOS fabricatic CMOS cell to implement and design combinational and sequential circuits emories. Students will also be introduced with the concept of FPGA implement	and will unde	rstand the con	cepts of dynamic CM	IOS logics and	
Course	e Outcome	e (CO)					
Course outcome: After completion of this course students will be able to:							
CO 1	Use the ba	sics of MOS device and define CMOS fabrication steps.				K1	
CO2	Explain C	MOS inverter and its switching characteristics.				K3	
	Ŭ	Combinational and Sequential MOS logic circuits.				K4	
CO4	Explain aı	nd design dynamic logic circuits.				K4	
CO5	Describe t	he concept of semiconductor memories and ASIC.				K4	
Syllabı	us						
Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping	
T	Design Flow and CMOS	VLSI Design flow: VLSI Design flow & Y-Chart, MOS Transistor Basic, MOS switch, Basic MOS Device design equation, MOSFET capacitances, Parasitic capacitances, latch-up, Second order effects. Fabrication Process Flow: Basic Steps, The CMOS n-Well Process,SOI.	TLM/Work shop/PPT	7L	Assignment	CO1	

	inverter and Switching Character	CMOS inverter: Circuit operation, DC transfer characteristics, Noise margin: calculation of VIL, VIH, Vth, Design of CMOS inverter, Supply voltage scaling, Device sizing. Switching characteristic: Delay time definition, calculation of delay times, inverter design with delay constraints, Power dissipation of CMOS inverter.	TLM/Work shop/PPT	8L	Assignment	CO2
	ional and sequential MOS logic	Combinational MOS Logic Circuits: Complex Logic circuits design – Realizing Boolean expressions using CMOS gates, AOI and OAI gates, Design of Half Adder, Full Adder, Multiplexers, Demultiplexers using CMOS. Sequential MOS Logic Circuits: Behaviour of bi-stable elements, D latch, SR Latch, Clocked latch and flip flop circuits, CMOS, and edge triggered flip-flop.		8L	Assignment	CO3
IV	logic Circuits	Dynamic CMOC transmission acts logic II als nonformance Dynamic CMOC	TLM/Work shop/PPT	8L	Assignment	CO4
	on to Semicond uctor memories and ASIC		TLM/Work shop/PPT	9L	Assignment	CO5
Total				40L		

Text boo	ks
Sr No	Book Details
1.	Kang, Leblebici, "CMOS Digital Integrated Circuits", TMH, 3 rd Edition.
2.	Rabat, Chandrakasan and Nikolic, "Digital Integrated Circuit: A Design Perspective", PHI; Latest Edition.
3.	Weste and Eshraghian, "Principles of CMOS VLSI Design" Addison Wesley, Latest Edition.
Referenc	e Books
Sr No	Book Details
1.	Weste and Harris, "CMOS VLSI Design".
2.	Bushnell and Agrawal, "Essentials of VLSI Testing for digital, memory and mixed-signal VLSI Circuits", Kluwer Academic Publishers.
	nly Verified links should be pasted here)
_	linecourses.nptel.ac.in/noc20_ee29/preview_
-	vw.youtube.com/watch?v=MuBiC9yz2fc
	tel.ac.in/courses/108/106/108106158 ww.youtube.com/watch?v=UuafwIJAKhY

(AN AUTONOMOUS INSTITUTE)

Subje	ct Name: MICROPROCESSOR AND MICROCONTROLLER	L-T-P [2-0-0]	Credit: 2
Subje	ct Code: BEC0402	Applicable in Depar	tment: ECE
Pre-re	equisite of Subject: Basics of digital electronics		
Cours	e Objective: Students will learn about:		
 To Th Th Th Cou 	e fundamentals of general microprocessor & microcontroller. Describe the architecture & organization of 8086 Microprocessor. e architecture of 8051 microcontrollers with real time application. e fundamentals of ARM Processor and embedded systems. e knowledge of ARM Instruction Set for programming urse Outcomes (CO)		
Cours	e outcome: After completion of this course students will be able to:		Bloom's Knowledge Level(KL)
CO1	Explain the fundamentals of general microprocessor & microcontroller.		К2
CO2	Explain the architecture & organization of 8086 Microprocessor		К5
CO3	Implement 8051 microcontroller for designing various applications.		К3
CO4	Illustrate the fundamentals of ARM Cortex M0 Processor		K4

CO5	Apply the knowled	dge of ARM Instruction Set for programming				K4
Syllabu	S					
Unit No	Module Name	Topic covered		Lecture Requir ed (I +P)	/ Assignm	CO Mapping
Ι	Basics of Microprocessor and microcontrollers	History and Evolution of Microprocessor and microcontrollers, Computer architecture: Harvard & Von Neumann architecture, RISC & CISC architecture, Different Layers of computer architecture, Buses, types of buses, bus architecture, Microprocessor architecture and its operations, address and data bus Multiplexing and Demultiplexing, Instruction format and size.	Exercises, Demo,	8+0	Assignm ent/Quizz es	CO1
п		Microprocessor architecture, Pipelining Concept, Memory Segmentation, General Purpose Registers, Pointer and Index Registers, Flag Register, Bus Interface Unit, 8086 Pin Description, addressing modes, Instruction set and assembler directives, 8086 Interrupt -Software and Hardware Interrupts.		8+10	Assignm ent/Practi cal 1 TO 5/Quizze s	CO2
ш	Introduction to 8051	Overview of the 8051, Inside the 8051, Addressing modes, 8051 data types and directives, Instruction set and assembly language programming of 8051 microcontrollers, Programming the 8051 timers, Interfacing of I/O devices (keypad & display) with 8051. Application of 8051 microcontroller	Exercises, Demo,	8+8	Assignm ent/Practi cal 6 to 9/Quizze s	
IV	ARM Processor- 1	Arm Processor Families, Arm Cortex-M Series Family, Cortex-M0 Processor: Cortex-M0 Overview, Cortex-M0 Block Diagram, Cortex- M0 Three-stage Pipeline, Cortex-M0 Registers, Cortex-M0 LR, Cortex- M0 PSRs, Cortex-M0 Memory Map, Cortex-M0 Executable Memory Space, Cortex-M0 Device Memory Space, Cortex-M0 Private Peripheral Bus, Cortex-M0 Reserved Memory Space, Cortex-M0 Memory Map Example, Cortex-M0 Endianness	Exercises, Demo,	8+0	Assignm ent/Practi cal /Quizzes	
V	ARM Processor- 2	Thumb Instruction Set, Thumb-2 Instruction Set, Cortex-M0 Instruction Set, Register Access: The Move Instruction, Memory Access: The LOAD Instruction, The STORE Instruction, Stack Access: PUSH and POP, Arithmetic instructions (ADD, SUB, MUL, CMP), Logic	Exercises, Demo, Hands-on Lab	8+4	Assignm ent/Practi cal 10to 11/Quizz	CO5

Total	Feature, How to Enable Sleep Features, Processor Wakeup Conditions, Wakeup Interrupt Controller, Enter and Exit Deep Sleep Mode	40+22		
	Operation, Arithmetic Shift Operation, Logical Shift Operation, Rotate Operation, Reverse Ordering Operation, Sleep Mode Related Instructions, CortexM0 Low Power Features: Sleep Mode, Sleep-on-Exit		es	

Textbooks	3	
Sr No	Book Details	
1.	Ramesh Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", 5th Edition, Penram International Publication (India) Pvt. Ltd.	
2	Douglas V. Hall, "Microprocessors and Interfacing", Tata McGraw Hill	
Reference	Books	
Sr No	Book Details	
1	Ray A K, Bhurchandi K M, "Advanced Microprocessors and Peripherals", TMH.	
Links (On	ly Verified links should be pasted here)	
Unit 1	https://www.youtube.com/watch?v=xBYhHC8_A6o	
Unit 2	https://www.youtube.com/watch?v=cNN_tTXABUA	
Unit 3	https://www.youtube.com/watch?v=sLW1TptEJBQ	
Unit 4	https://www.youtube.com/watch?v=9zOo4JkZgSI	
Unit 5	https://www.youtube.com/watch?v=pphUIgjvqJ8	

(AN AUTONOMOUS INSTITUTE)

Subje	ct Name: Verilog -	HDL Simulation and Synthesis		Ι	2-T-P [0 0 6]	Credi	it: 3
Subje	ct Code: BEC0454			P	Applicable in	Department	: ECE
Pre-re	equisite of Subject:	Basics of Digital System Design and	basics of any programming la	nguage.			
Cours	se Objective: The co	ourse will introduce the participants	to the Verilog hardware descr	ription language.	It will help th	em to learn v	various digital
circuit	t modeling issues using	g Verilog, writing test benches, and	some case studies.				
omes	(CO)						
Cours	se outcome: After co	npletion of this course students will	be able to:				Bloom's Knowledge Level(KL)
CO 1	Develop and identify	the suitable abstraction level for a p	articular digital design.				K4
CO2	Develop Verilog cod	es in gate, dataflow (RTL) modeling	glevels of abstraction.				K4
CO3	Develop Verilog cod	es in behavioral (RTL) modeling lev	vels of abstraction.				K4
CO4	Design and verify the	e functionality of digital circuit/syste	em using test benches.				K4
CO5	Design and simulate	basic modules using system Verilog					K4
Syllab	bus						
Unit No	Module Name	Topic covered		Pedagogy	Lecture Required	Practical/ Assignment	CO Mapping

				(L+P)	/ Lab Nos	
1	Design with Verilog HDL Hierarchical Modeling Concepts Basic Concept Modules and Ports	Top-down and bottom-up design methodology, differences between modules and module instances, parts of a simulation, design block,	Workshop/ PPT	(15=4+11)	Practical 1/Assignme nt	CO1
2	Modeling Dataflow Modeling	delays. Continuous assignments, delay specification, expressions, operators,	Workshop/ PPT	(15=4+11)	Practical 2 to 7/Assignme nt	CO2
3	Behavioral Modeling	operands, operator types. Structured procedures, initial and always, blocking and non-blocking statements, delay control, generate statement, event control, conditional statements, Multiway branching, loops, sequential and parallel blocks.	Workshop/ PPT	(20=8+12)	Practical 8 to 16/Assignm ent	CO3
4	Advance Verilog Topic	Timing and Delays, Switch-Level Modeling, Logic Synthesis with	Workshop/ PPT	(20=3+17)	Practical 17 to 20 /Assignment	CO4
5	Introduction to System Verilog	Origins, Overview, Need and Importance, System Verilog Declaration	Workshop/ PPT	(20=8+12)	Practical 21 to 25/Assignm ent	CO5
Total				90	25	

		СО
Sr No	Program Title	Mapping
	Simulate and synthesize following logic gates using gate level modeling	
	AND Gate	
	OR Gate	
1	NOT Gate	C01
	EX-OR Gate	
	NAND Gate	
	NOR Gate	
	Simulate and synthesize following combinational circuits using gate level modeling	
	Half adder	
	Full adder	
	Half subtractor	
	Full subtractor	
2	4:1 Multiplexer	CO2
	4:2 Encoder	
	1:4 Demultiplexer	
	2:4 Decoder	
	1 Bit Comparator	
	2*2 Bit Multiplier	
3	Simulate and synthesize binary to gray code converter using gate level modeling.	CO 2
_	Simulate and synthesize gray to binary code converter using gate level modeling.	
1	Simulate and synthesize following combinational circuits using data flow modeling	
	Half adder	
	Full adder	
4	Half subtractor	CO 2
-	Full subtractor	02
	4:1 Multiplexer	
	4:2 Encoder	
	1:4 Demultiplexer	
	2:4 Decoder	

	1 Bit Comparator	
5	2*2 Bit Multiplier Simulate and synthesize 4 bit parallel adder/subtractor using data flow modeling.	CO 2
6	Simulate and synthesize following ALU operations using data flow modeling	
	OPCODEALU Operation1.A+B2.A-B3.A Complement4.A*B	CO 2
7	Simulate and synthesize binary to gray code converter using data flow modeling. Simulate and synthesize gray to binary code converter using data flow modeling.	CO 2
8	Simulate and synthesize following flip flops using behavioral modeling SR Flip Flop JK Flip Flop D Flip Flop	CO3
9	T Flip Flop Simulate and synthesize flip flops using behavioral modeling Using positive edge and negative edge. Using synchronous and asynchronous reset	CO3
10	Simulate and synthesize following shift registers using behavioral modeling Serial input serial output Serial input parallel output Parallel input serial output Parallel input parallel output	CO3
11	Simulate and synthesize following universal shift register using behavioral modeling	CO3
12	Simulate and synthesize following counters using behavioral modeling 2 Bit Counter	CO3

	Mod 5 Counter	
	Decade Counter	
	Ring Counter	
	Johnson Counter	
13	Simulate and synthesize array multiplier using behavioral modeling	CO3
14	Simulate and synthesize 4:1 MUX by using 2:1 MUX	
	Lleine e wire	CO3
	Using a wire Using a reg	
15	Simulate and synthesize Moore sequence	
10		CO3
	1010	
	1011	
16	Simulate and synthesize Mealy sequence	
	1010	CO3
	1011	
17	Implementation of logic gates on an FPGA and verify gates functionality.	CO 4
18	Implementation of 4:1 multiplexer on a FPGA	CO 4
19	Implementation of 2*2 multiplier on a FPGA	CO 4
20	Implementation of D flip flop on a FPGA	CO 4
21	Design and simulation of logic gates.	CO
22	Design and simulation of 2:1 MUX	
	Using assign statement	CO
	Using if statement	
	Using case statement	
23	Design and simulation of priority encoder.	CO
24	Design and simulation of D latch.	CO
25	Design and verify a simple single port RAM.	CO

Textbook	s I
Sr No	Book Details
1.	Samir Palnitkar, —Verilog HDL: A Guide to Digital Design and Synthesis", Pearson Education, Second Edition.
2.	Fundamentals of Digital Logic with Verilog Design by Stephen Brown and Zvonko Vranesic
3.	A VHDL Primer by John Bhasker.
4.	Kevin Skahill, —VHDL for Programmable Logicl, PHI/Pearson education, 2006.
Reference	Books
Sr No	Book Details
1.	Donald E. Thomas, Philip R. Moorby, —The Verilog Hardware Description Languagel, Springer Science+Business Media, LLC, Fifth edition.
2.	Michael D. Ciletti, —Advanced Digital Design with the Verilog HDLI Pearson (Prentice Hall), Second edition.
3.	Padmanabhan, Tripura Sundari, —Design through Verilog HDLI, Wiley, 2016 or earlier.
Links (On	ly Verified links should be pasted here)
Unit 1:	
https://ww	w.youtube.com/watch?v=NCrlyaXMAn8&list=PLJ5C_6qdAvBELELTSPgzYkQg3HgclQh-5

https://www.youtube.com/watch?v=NdWTDZ7dg-8&list=PLJ5C_6qdAvBELELTSPgzYkQg3HgclQh-5&index=2
https://www.youtube.com/watch?v=9uw25PU5B3k&list=PLJ5C_6qdAvBELELTSPgzYkQg3HgclQh-5&index=3
https://www.youtube.com/watch?v=f_6fMjOI_Co&list=PL_3xKnVkfI2hB9gBEsv5QGB4LRscGAQl9&index=2
https://www.youtube.com/watch?v=ie3xUHV5Z58&list=PL_3xKnVkfI2hB9gBEsv5QGB4LRscGAQl9&index=3
https://www.youtube.com/watch?v=MNB6R6yB3M8&list=PL_3xKnVkfI2hB9gBEsv5QGB4LRscGAQl9&index=4
Unit 2:
https://www.youtube.com/watch?v=twQ-KJzKZ6g&list=PL_3xKnVkfI2hB9gBEsv5QGB4LRscGAQl9&index=12
https://www.youtube.com/watch?v=nppeLcU8iZM&list=PL_3xKnVkfI2hB9gBEsv5QGB4LRscGAQl9&index=13
Unit 3:
https://www.youtube.com/watch?v=jbH9Jdhr8MQ&list=PL_3xKnVkfI2hB9gBEsv5QGB4LRscGAQ19&index=14
https://www.youtube.com/watch?v=oVxnVmw7fco&list=PLFXvEi07abL3LEnEDHdC6jl3Z18Rnt8WX&index=10
https://www.youtube.com/watch?v=7rtJdRez_C8&list=PLFXvEi07abL3LEnEDHdC6jl3Z18Rnt8WX&index=11
Unit 4:
https://www.youtube.com/watch?v=q3-MgvR80pU&list=PL_3xKnVkfI2hB9gBEsv5QGB4LRscGAQl9&index=15
https://www.youtube.com/watch?v=5ejRluS5YRk&list=PL_3xKnVkfI2hB9gBEsv5QGB4LRscGAQl9&index=17

(AN AUTONOMOUS INSTITUTE)

SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING

LAB NAME: MICROPROCESSOR AND MICROCONTROLLER LAB

L-T-P [0 0 4]

Credit: 2

LAB CODE: BEC0452

Applicable in Department: ECE

Lab Experiments:

Course Objective: The students will learn about

The Microprocessors and Microcontrollers laboratory course assists students in developing their understanding of processor architecture and programming abilities.

8086 Microprocessor for writing assembly level language.

ARM Instruction Set for writing program.

Course Outcomes (CO)

Course	e outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)		
CO 1	Apply the knowledge of 8086 Microprocessor for writing assembly level language.	K2		
CO2	Analyze the interfacing of various I/O devices with programming.	K5		
CO3	Implement timer in 8051 microcontrollers for generating waveforms.	К3		
CO4	Apply the knowledge of ARM Instruction Set to write the program for given application.	K4		
List of	Practicals	·		
Sr No	Program Title	СО		

		Mapping
1.	To study 8086 microprocessor system.	
	To study 6060 meroprocessor system.	CO2
2.	Write a program using 8086 Microprocessor for Hexadecimal addition of two 8-bit Numbers.	CO2
3.	Write a program using 8086 Microprocessor for Hexadecimal subtraction of two 8-bit Numbers.	CO2
4.	Write a program using 8086 Microprocessor for Hexadecimal addition/subtraction of two 16-bit Numbers.	CO2
5.	To perform multiplication of two 8-bit numbers using 8086.	CO2
6.	Write a program of flashing LED connected to port 1 of the 8051 Microcontroller.	CO3
7.	Write a program to generate 10 kHz square wave using 8051 Microcontroller.	CO3
8.	Write a program to show the use of INT0 and INT1 of 8051 Microcontroller.	CO3
9.	Write a program to generate a Ramp waveform of 1 KHz using DAC with 8051 micro controller.	CO3
10.	To write and simulate ARM assembly language programs for data transfer, arithmetic and logical operations (Demonstrate with the help of a suitable program).	CO5
11.	To write and simulate C Programs for ARM microprocessor using KEIL software. (Demonstrate with the help of a suitable program)	CO5
-	red Software and Tools	
1. 2.	8086 Microprocessor Kit 8051 Microcontroller	
3.	KEIL software	

(AN AUTONOMOUS INSTITUTE)

SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING

LAB NAME: Analog and Digital Communication Lab	
--	--

L-T-P [0 0 4]

Credit: 2

LAB CODE: BEC0451

Applicable in Department: ECE

Course outcome: A	After completion of this course students will be able to:	\mathbf{D}_{1}
	•	Bloom's Knowledge Level(KL)
CO 1	Demonstrate and perform amplitude modulation (AM), frequency modulation (FM) and its demodulation.	K1, K2
CO2	Demonstrate and perform Pulse Code Modulation (PCM).	K2, K3
CO3	Encode and decode digital data into different data formats.	K2, K4
CO4	Perform digital modulation techniques.	K4, K5
CO5	Analyse convolutional code using MATLAB.	K4, K5

S.No	Program Title	CO Mapping
	Demonstrate amplitude modulation by using balance modulator (MC1496P) & demodulation by using linear diode	
1	detector with modulating frequency $fm = 1 \text{ KHz} - 3 \text{ KHz}$ and carrier frequency $fc = 20 \text{ KHz} - 1 \text{ MHz}$. (i) Draw its output	CO1
	waveform (ii) Calculate Modulation Index (μ), Carrier Power (Pc) and Transmitted Power (Pt)	
2	Demonstrate frequency modulation and demodulation (using PLL 565) with modulating frequency fm = 1 KHz and carrier frequency fc = 20 KHz - 1 MHz. (i) Draw its output waveform (ii) Determine frequency deviation (iii)Modulation index (β).	CO1
3	Perform and draw the output waveform of Pulse Code Modulation (PCM) and its demodulation with modulating frequency fm = 80 KHz.	CO2
4	Demonstrate and draw the output waveform with input code 10101010 for the Unipolar RZ & NRZ Line Coding.	CO2
5	Demonstrate and draw the output waveform with input code 10101010 for the Polar RZ & NRZ Line Coding.	CO2
6	Demonstrate and draw the output waveform with input code 10101010 for the Manchester line coding technique	CO2
7	Demonstrate Amplitude Shift Keying (ASK) modulator and demodulator using message signal 10101010 with carrier frequency fc = 20 kHz – 1MHz. (i) Draw and observe its output waveform (ii) Determine Energy per bit (Eb) (iii) Bandwidth (BW)	CO2
8	Demonstrate Frequency Shift Keying (FSK) modulator and demodulator for message signal 10101010 with carrier frequency fc = 940Hz. (i) Draw its output waveform (ii) Determine Energy per bit (Eb) for FSK (iii) Bandwidth (BW) for FSK	CO2
9	Demonstrate Phase Shift Keying (PSK) modulator and demodulator for message signal 10101010 with carrier frequency fc = 1.44MHz. (i) Draw its output waveform (ii) Determine Energy per bit (Eb) for PSK (iii)Bandwidth (BW) for PSK	CO2
10	Demonstrate Quadrature Phase Shift Keying (QPSK) modulator and demodulator for message signal 10101010 with carrier frequency fc = 960kHz. (i) Draw its output waveform (ii) Determine Energy per bit (Eb) for QPSK (iii) Bandwidth (BW) for QPSK	CO2

11	Calculation of BER of BASK using MATLAB.	CO3			
12	12 Calculation of BER of BFSK using MATLAB.				
13	Calculation of BER of BPSK using MATLAB.	CO3			
14	Perform Huffman Coding for given symbols using MATLAB and calculate efficiency.	CO4			
15	Perform encoder of (7, 4) Hamming code using MATLAB	CO4			
16	Analysis and performance evaluation of convolutional codes using MATLAB for message code = [1 0 1 1]	CO5			
•	oftware and Tools ASK, FSK, PSK Kits.				
. MATLAI	3 software.				

(AN AUTONOMOUS INSTITUTE)

Techn	ical Communication La	ab L T P : [0 0 2]		Credit: 1			
Subject Code: BASL0451							
List of	List of Practicals						
Lab No.	Торіс	Program Logic Building	CO Mapping	Alignedwith university/industry/certifications			
1	Case Study Analysis	The students will be able to develop their critical thinking and analytical skills.	CO1	AKTU/Industry			
2	Email Role Reversal: Writing and responding to emails in peer groups	The students will practice writing and responding to professional emails.	CO2	AKTU/Industry			
3	Infographics – Data Analysis and Interpretation Task	The students will develop their ability to decipher important information from charts, graphs, tables, and diagrams.	CO3	AKTU/Industry			
4	Document Redesign Challenge: Redesigning existing technical documents	The students will develop their ability to write and edit professional documents.	CO3	AKTU/Industry			

	to improve readability			
5	Abstract Formulation and Referencing	The students will be able to write research papers with proper source citations.	CO3	AKTU/Industry
6	Case Study presentations	The students will improve their analytical skills and by presenting improve their speaking skills.	CO4	AKTU/Industry
7	Presentation on Project Report	The students will develop professional speaking skills.	CO4	AKTU/Industry
8	Ted talk simulation – summarising a Ted Talk	The students improve their ability to condense speeches.	CO4	AKTU/Industry
9 & 10	Mock Interviews	The students will practice and enhance their interview skills.	CO4	AKTU/Industry
11 & 12	Webinar Presentations/Online Interviews	The students will improve their ability to make presentations in professional scenarios and perform well in online interviews.	CO5	Industry

<	NIET Greater Noida
Get Pulsers Ready	Automation institute

(AN AUTONOMOUS INSTITUTE)

SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING

Subject Name: Environmental Science

L-T-P [2-0-0]

Credit: NA

Subject Code: BNC0302/BNC0402

Applicable in Department: ECE/BIOTECH/CSE/IT

Pre-requisites of the Subject: Basic knowledge of nature.

Course Objective-

- 1. To help the students in realizing the inter-relationship between man and environment. and help the students in acquiring basic knowledge about environment.
- 2. To create positive attitude about environment among the student.
- 3. To develop the sense of awareness among the students about environment and its various problems.
- 4. To develop proper skill required for the fulfilment of the aims of environmental education and educational evaluations.
- 5. To develop the capability of using skills to fulfil the required aims, to realise and solve environmental problems through social, political, cultural and educational processes.

Course outcome (CO)

Bloom's Knowled **Course outcome:** After completion of this course students will be able to: ge Level (KL) Understand the basic principles of ecology and environment. Ecosystem: Basic concepts, components of ecosystem., food chains and **K**2 CO 1 food webs. Ecological pyramids K2 Understand the different types of natural recourses like food, forest, minerals and energy and their conservation CO₂ Understand the importance of biodiversity, Threats of biodiversity and different methods of biodiversity conservation. K2 CO3 **K**3 Understand the different types of pollution, pollutants, their sources, effects and their control methods CO₄

CO 5	Understand the basic concepts of sustainable development, Environmental Impact Assessment (EIA) and different acts related to	K3
05	environment	

Syllabus

Unit No	Module Name	Topic covered	Pedagogy	Require d	Practical/ Assignment / Lab Nos	CO Mapping
I I DIT I	Basic Principle of Ecology	Definition, Scope and basic principles of ecology and environment. Ecosystem: Basic concepts, components of ecosystem. Food chains and food webs. Ecological pyramids, Energy flow in ecological systems, Characteristics of different ecosystems. Biogeochemical Cycles: Importance, gaseous and sedimentary cycles. Carbon, Nitrogen, Phosphorus and Sulphur Cycles. Basic concepts of sustainable development, SDGs, Ecosystem services, UN Decade for Ecorestoration.	Samart Board/PPT	8	Assignment	CO1
Unit 2	Natural Resources and Associated Problems	Natural resources and associated problems. Forest resources: Use and over- exploitation, deforestation. Timber extraction, mining, dams and their effects on forest and tribal people. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. Food resources: World food problems, changes caused by agriculture and over-grazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. Land resources: Land as a resource, land degradation, man induced landslides. Equitable use of resources for sustainable lifestyles. Non-Renewable Energy Resources: Fossil fuels and their reserves, Nuclear energy, types, uses and effects, Renewable Energy Resources: hydropower, Solar energy, geothermal, tidal and wind energy, Biomass energy, biogas and its advantages.	Samart Board/PPT	8	Assignment	CO2
Unit 3	Biodiversity Succession and Non-Renewable Energy Resources	Biodiversity and their importance, Threats to biodiversity, major causes, extinction's, vulnerability of species to extinction, IUCN threat categories, Red data book. Strategies for biodiversity conservation, principles of biodiversity conservation in-situ and ex-situ conservation strategies Mega diversity zones and Hot spots, concepts, distribution and importance. Succession: Concepts of succession, Types of Succession. Trends in succession. Climax and stability.	Samart Board/PPT	8	Assignment	CO3
Unit 4	Pollution and Solid Waste Management	Air pollution: sources of air pollution, Primary and secondary air pollutants. Origin and effects of SOX, NOX, Cox, CFC, Hydrocarbon, control of air pollution. Water pollution: sources and types of water pollution, Effects of	Samart Board/PPT	8	Assignment	CO4

	water pollution, Eutrophication, Soil pollution: Causes of soil pollution, Effects of soil pollution, Major sources of and effects of noise pollution on health, Radioactive and thermal pollution sources and their effects on surrounding environment. Solid waste disposal and its effects on surrounding environment, Climate change, global warming, acid rain, ozone layer depletion.			
	Role of community, women and NGOs in environmental protection, Bioindicators and their role, Natural hazards, Chemical accidents and disasters risk management, Environmental Impact Assessment (EIA), Salient features of and EnvironmentalAct, 1972.b. Water (Prevention and control of pollution) Act, 1986, Wildlife (Protection) and EnvironmentalAct, 1972.b. Water (Prevention and control of pollution) Act, 1974.c. Air Protection Acts (Prevention and control of pollution) Act, 1981. Forest (Conservation) Act, 1980.d. Wetlands (Conservation and Management) Rules, 2017; e. Chemical safety and Disaster Management law. F. District Environmental Action Plan. Climate action plans	8	Assignment	CO5
Total		40		
Textboo	ks			
1. Sodhi	G.S. 2005, Fundamentals of Environmental Chemistry: Narosa Publishing House, New Delhi.			
2.Dash, I	M.C. (1994), Fundamentals of Ecology, Tata Mc Graw Hill, New Delhi.			
3.Sharm	a P. D. (1996). Environmental Biology, Rastogi Publications, Meerut.			
4.Verma	P.S. and V.K. Agarwal. (1985). Principles of Ecology. S. Chand and Company (Pub.), New Delhi			
Referen	ce Books			
1.Princip	les of Environmental Sciences and Engineering -P. Venugoplan Rao, Prenitice Hall of India.			
2.Enviro	nmental Science and Engineering Meenakshi, Prentice Hall India.			
	only Verified links should be pasted here)			

Unit-1	https://www.youtube.com/watch?v=T21OO0sBBfc	
Unit-2	2 <u>https://www.youtube.com/watch?v=mOwyPENHhbc</u>	
Unit-3	<u>https://www.youtube.com/watch?v=GK_vRtHJZu4</u>	
Unit-4	https://www.youtube.com/watch?v=7qkaz8ChelI	
Unit-5	https://www.youtube.com/watch?v=ad9KhgGw5iA	