

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

B.Tech - Second Year-Lateral Entry (B.Sc.)

(Effective from the Session: 2023-24)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.) B.Tech (CS, CSE(IOT), CSE(CYS), ECE, IT, CSE(AIML), ME, CSE, CSE-R, CSE(DS), CSE(AI), BT) EVALUATION SCHEME SEMESTER-III

Sl.	Subject Name		Periods		Evaluation Scheme			ne	End Semester		Total	Credit	
No.	Codes	Subject Ruine	L	T	P	CT	TA	TOTAL	PS	TE	PE	10001	010010
		WEEKS COMP	ULS	ORY	Y INI	DUCT	ION I	PROGRA	M				
1	BCSE0151Z	Problem Solving using Python	0	0	6				50		100	150	

All the students must clear the above mentioned subjects of the first year (Semester-I) Engineering Program along with the second year (Semester-III) subjects.

All Bridge Courses (Compulsory Audit Courses) a qualifying exam has no credit.

Total and obtained marks are not added in the Grand Total.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.) B.Tech (CSBS) EVALUATION SCHEME SEMESTER-III

Sl.	Subject Codes	Subject Name	P	erio	ds	Ev	valuat	ion Schen	ne	End Semester		Total	Credit
No.	Codes	Subject Marie	L	T	P	CT	TA	TOTAL	PS	TE	PE	10001	
		WEEKS COMP	ULS	ORY	Y INI	DUCT	ION I	PROGRA	M				
1	BCSBS0103Z	Fundamentals of Computer Science	3	0	0	30	20	50		100		150	
2	BCSBS0153Z	Fundamentals of Computer Science Lab	0	0	4				25		25	50	
		GRAND TOTAL										200	

All the students must clear the above mentioned subjects of the first year (Semester-I) Engineering Program along with the second year (Semester-III) subjects.

All Bridge Courses (Compulsory Audit Courses) a qualifying exam has no credit.

Total and obtained marks are not added in the Grand Total.

Abbreviation Used: -

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.) B.Tech (CS, CSE(CYS), IT, CSE(AIML,CSE, CSE-R,CSE(DS), CSE(AI) EVALUATION SCHEME SEMESTER-IV

	Sl.	Subject Name		P	Periods		Evaluation Scheme				End Semester		Total	Credit
1	No.	Codes	Subject i valle	L	T	P	CT	TA	TOTAL	PS	TE	PE	10001	
			WEEKS COMP	ULS	ORY	Y IN	DUCT	ION F	PROGRA	M				
1		BCSE0252Z	Advanced Python	0	0	6				50		100	150	

All the students must clear the above mentioned subjects of the first year (Semester-II) Engineering Program along with the second year (Semester-IV) subjects.

All Bridge Courses (**Compulsory Audit Courses**) a qualifying exam has no credit. Total and obtained marks are not added in the Grand Total.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.) B.Tech (BT) EVALUATION SCHEME SEMESTER-IV

Sl.	Subject	Subject Name	Periods			Evaluation Scheme				End Semester		Total	Credit
No.	Codes	Subject Hame		T	P	CT	TA	TOTAL	PS	TE	PE	10001	
		WEEKS COMP	ULS	ORY	Y INI	DUCT	ION I	PROGRA	M				
1	BBT0101Z / BBT0102Z	Elementary Mathematics/Remedial Biology	3	1	0	30	20	50		100		150	
		GRAND TOTAL										150	

All the students must clear the above mentioned subjects of the first year (Semester-I) Engineering Program along with the second year (Semester-IV) subjects.

All Bridge Courses (**Compulsory Audit Courses**) a qualifying exam has no credit.

Total and obtained marks are not added in the Grand Total.

Abbreviation Used: -

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.) B. Tech (ECE, ME, IOT) EVALUATION SCHEME

SEMESTER-IV

Sl.	Subject Name		P	erio	ds	Ev	valuat	ion Schen	ne	End Semester		Total	Credit
No.	Codes	Subject Nume	L	T	P	CT	TA	TOTAL	PS	TE	PE	10001	Create
		WEEKS COMP	ULS	ORY	Y IN	DUCT	ION I	PROGRA	M				
1	BCSE0251Z	C Programming	0	0	6				50		100	150	

All the students must clear the above mentioned subjects of the first year (Semester-II) Engineering Program along with the second year (Semester-IV) subjects.

All Bridge Courses (Compulsory Audit Courses) a qualifying exam has no credit.

Total and obtained marks are not added in the Grand Total.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.) B.Tech (CSBS)

EVALUATION SCHEME

SEMESTER-IV

Sl.	Subject Codes	Subject Name	P	Periods		Evaluation Scheme			End Semester		Total	Credit	
No.	Codes	Subject I (unite	L	T	P	CT	TA	TOTAL	PS	TE	PE	10001	
		WEEKS COM	PULS	ULSORY INDUCTION PROGRAM			•						
1	BCSBS0203Z	Data Structures & Algorithms	3	1	0	30	20	50		100		150	
2	BCSBS0253Z	Data Structures & Algorithms Lab	0	0	4				25		25	50	
		GRAND TOTAL										200	

All the students must clear the above mentioned subjects of the first year (Semester-II) Engineering Program along with the second year (Semester-IV) subjects.

All Bridge Courses (Compulsory Audit Courses) a qualifying exam has no credit.

Total and obtained marks are not added in the Grand Total.

B. Tech.- First Semester

Branch-CSE/CSE-

R/CS/IT/M.Tech.(int.)/CSE(IOT)/CSE(DS)/CSE(AI)/CSE((AIML)/CYS/ECE/ECE(VLSI)/ME/BT

,	
Subject Code-BCSE0151Z	L- T- P
	0-0-6
Subject Name- Problem Solving using Python	No. of hours-68

Course Objective- To provide Basic knowledge of Python programming and to implement programming skills for solving real-world problems.

Course Outcome -

- **CO1** Understanding basic programming logic.
- **CO2-** Implement python programs using decision control statements.
- **CO3-** Implement user defined functions and modules in python.
- **CO4-** Implement python data structures –lists, tuples, set, dictionaries.
- **CO5-** Apply programming concepts to solve real world problem

Course Content

Uni t	Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assignment /Lab	CO Mappi ng
Unit 1.	Basics of python programming	Problem Solving, Techniques, Algorithm, Building blocks of algorithms (statements, state, control flow, functions), Notation, Flow chart, Pseudo code, programming language, Categories of programming languages.	Lecture , Hands-on exercise, Demonstrati on, practical lab	6(4+2)	Implementation of basic Python programs.	1

		A Brief History of Python, Applications areas of python, The Programming Cycle for Python, Python IDE, Interacting with Python Programs.		3(1+2)	Installation of IDE and Command Prompt.	1
		Elements of Python: keywords and identifiers, variables, data types and type conversion,		3(1+2)	Demonstrate the use of these in python programs.	1
		operators in python, expressions in python, strings.		3(1+2)	Develop python program to demonstrate use of Operators.	1
Unit 2	Decision Control Statements	Conditionals: Conditional statement in Python (if- else statement, its working and execution)	Hands-on exercise, Demonstrati on, lectures, practical lab	3(1+2)	Develop programs for the use of conditional statements.	2
		Nested-if statement and elif statement in Python, Expression Evaluation & Float Representatio n.		4(1+3)	Develop programs of different types of statements.	2
		Loops: Purpose and working of loops, while loop, For		7(2+5)	Hands on practice on Loops.	2

		Loop, Nested				
		Loops, Break				
		and Continue,				
		pass statement.				
11	F atia	1	Lastina	4/4 : 2)	Lagran also at lagrants and an	2
Unit	Function	Introduction	Lecture ,	4(1+3)	Learn about how to call or	3
3	and	of Function,	Hands-on		create the functions.	
	Modules	calling a	exercise,			
		function,	Demonstrati			
		Function	on, practical			
		arguments,	lab			
		built in				
		function,				
		scope rules				
		Passing		7(4+3)	Hands-on functions .	
		function to a				
		function,				
		recursion,				
		Lambda				
		functions				
		Modules and		4(1+3)	Develop python programs	
		Packages:			for modules.	
		Importing				
		Modules,				
		writing own				
		modules,				
		Standard				
		library				
		modules, dir(
) Function,				
		Packages in				
		Python				
Unit	Basic Data	Strings: Basic	· ·	3(1+2)	Implement and play with	4
4	structures	operations,	Hands-on		strings.	
	in Python	Indexing and	exercise,			
		Slicing of	Demonstrati			
		Strings,	on, practical			
		Comparing	lab			
		strings				
		Regular		4(1+3)	Demonstration of the	
		expressions.			regular expression.	
		Python Basic				
		Data				
		Structure:				
		Sequence,				
		Unpacking				
		Sequences,				
		Mutable				
		Sequences,				

		Lists, Looping in lists, Tuples, Sets, Dictionaries. Map, filter, Reduce, Comprehensi on		7(3+4)	Implement different methods for these data structures.	
Unit 5	File and Exception handling	Files and Directories: Introduction to File Handling in Python, Reading and Writing files, Additional file methods, Working with Directories.	Lecture , Hands-on exercise, Demonstrati on, practical lab	4(1+3)	Learn Python file handling methods and python file operations	5
		Exception Handling, Errors, Run Time Errors, Handling IO Exception, Try-except statement, Raise		6(2+4)	Learn about Python exception handling methods	5

References-

Text Books:

- 1. Magnus Lie Hetland, "Beginning Python-From Novice to Professional"—Third Edition, Apress
- 2. Python Programming using Problem solving approach by ReemaThareja OXFORD Higher education
- 3. Kenneth A. Lambert, —Fundamentals of Python: First Programs, CENGAGE Learning, 2012.

Reference Books:

- 1. John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press , 2013
- 2. Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem Solving Focus, Wiley India Edition, 2013.
- **3.** Allen B. Downey, "Think Python: How to Think Like a Computer

Links:

UNIT 1: https://nptel.ac.in/courses/106/106/106106182/

UNIT 2: https://nptel.ac.in/courses/106/106/106106212/

https://www.youtube.com/watch?v=PqFKRqpHrjw

UNIT 3: https://nptel.ac.in/courses/106/106/106106145/

https://www.youtube.com/watch?v=m9n2f9lhtrw https://www.youtube.com/watch?v=oSPMmeaiQ68

UNIT 4: https://nptel.ac.in/courses/106/106/106106145/

https://www.youtube.com/watch?v=ixEeeNjjOJ0&t=4s

UNIT 5: https://nptel.ac.in/courses/106/106/106106145/
https://nptel.ac.in/courses/106/106/106106145/
https://www.youtube.com/watch?v=NMTEjQ8-AJM

LAB

Total No. of Practicals: 228

List of Practicals

Lab No.	Unit	Торіс	Program Logic Building	CO Mapping
1.1	1	Basic Python(Syntax, Variable, Type Conversion)	Python Program to Print Statement	CO1
1.2	1	Basic Python(Syntax, Variable, Type Conversion)	Swap two variables without using a temporary variable.	CO1
1.3	1	Basic Python(Syntax, Variable, Type Conversion)	Check if a given number is even or odd.	CO1
1.4	1	Basic Python(Syntax, Variable, Type Conversion)	Find the largest of three numbers.	CO1
1.5	1	Basic Python(Syntax, Variable, Type Conversion)	Convert a string to an integer.	CO1
1.6	1	Basic Python(Syntax, Variable, Type Conversion)	Convert an integer to a string.	CO1
1.7	1	Basic Python(Syntax, Variable, Type	Convert a string to a floating-point number.	CO1

		Conversion)		
1.8	1	Basic Python(Syntax, Variable, Type Conversion)	Convert a floating-point number to an integer.	CO1
1.9	1	Basic Python(Syntax, Variable, Type Conversion)	WAP to demonstrate implicit and explicit type conversion.	CO1
1.10	1	Basic Python(Syntax, Variable, Type Conversion)	Convert Employee Count to Binary	CO1
1.11	1	Basic Python(Syntax, Variable, Type Conversion)	Convert Revenue to Currency Format	CO1
1.12	1	Operators	Write a program to Calculate Sum of 5 Subjects and Find Percentage (Max Mark in each subject is 100).	CO1
1.13	1	Operators	Write a program to find gross salary.	CO1
1.14	1	Operators	Write a program to Calculate Area of Rectangle, Square.	CO1
1.15	1	Operators	Write a program to Calculate Area of Scalene Triangle and Right-angle Triangle.	CO1
1.16	1	Operator	Write a program to find the perimeter of a circle, rectangle and triangle.	CO1
1.17	1	Operator	Write a program to Compute Simple Interest.	CO1
1.18	1	Operator	Write a program to Convert Fahrenheit temperature in to Celsius.	CO1
1.19	1	Operator	Write a program to Find the Gravitational Force Acting Between Two Objects.	CO1
1.20	1	Operator	Write a program to swap the values of two variables with and without using third variable.	CO1
1.21	1	Operator	Write a program to perform arithmetic operations on a = 8, b = 3.	CO1
1.22	1	Operator	Write a program to apply relational operations on a=8, b=3.	CO1

L

1.23	1	Operator	Write a program to apply assignment operations	CO1
			on a=8, b=3.	
1.24	1	Operator	Write a program to apply logical operations on	CO1
			a=8, b=3.	
1.25	1	Operator	Write a program to apply bitwise operations on	CO1
			a=8, b=3.	
1.26	1	Operator	Write a program to apply identity operators.	CO1
1.27	1	Operator	Write a program to Swap the Contents of two	CO1
			Numbers using Bitwise XOR Operation	
1.28	1	Operator	WAP to find the absolute value of the given	CO1
			number.	
1.29	1	Operator	Write a program to Add two Complex Numbers.	CO1
1.30	1	Operator	Write a Program to find roots of a quadratic	CO1
			expression.	
1.31	1	Arithmetic	Program to perform basic arithmetic operations	CO1
		Operator	(addition, subtraction, multiplication, division) on	
			two numbers.	
1.32	1	Arithmetic	Program to calculate the area of a rectangle using	CO1
		Operator	the multiplication operator.	
1.33	1	Arithmetic	Program to calculate the average of a list of	CO1
		Operator	numbers using the division operator.	
1.34	1	Comparison	Program to compare two numbers and determine	CO1
		Operator	if they are equal.	
1.35	1	Comparison	Program to compare two numbers and determine	CO1
		Operator	whether they are greater than or less than .	
1.36	1	Comparison	Program to check if a given string is equal to a	CO1
		Operator	specific value.	
1.37	1	Logical Operator	Write a program to apply Logical AND operator on	CO1
			two operands.	
1.20	1	Lagical Organization	Muito a programa to a such la sier LOD and a series	601
1.38	1	Logical Operator	Write a program to apply Logical OR operator on	CO1
			two operands.	

1.39	1	Logical Operator	Write a program to apply Logical NOT operator on an operand.	CO1
1.40	1	Assignment operator	Program to increment or decrement a variable using assignment operators.	CO1
1.41	1	Assignment operator	Program to calculate compound interest using compound assignment operators.	CO1
1.42	1	Bitwise Operator	Program to perform bitwise AND, OR, XOR, left shift, and right shift operations.	CO1
1.43	1	Bitwise Operator	Program to check if a given number is odd or even using bitwise operators.	CO1
2.1	2	Conditional Statements	Write a program to Accept two Integers and Check if they are Equal.	CO 2
2.2	2	Conditional Statements	Write a program to Check if a given Integer is Positive or Negative and Odd or Even.	CO 2
2.3	2	Conditional Statements	Write a program to Check if a given Integer is Divisible by 7 or not.	CO 2
2.4	2	Conditional Statements	Write a program to find the greatest of three numbers using else if ladder.	CO 2
2.5	2	Conditional Statements	Write a program to find the greatest of three numbers using Nested if.	CO 2
2.6	2	Conditional Statements	Write a program to convert an Upper-case character into lower case and vice-versa.	CO 2
2.7	2	Conditional Statements	Write a program to check weather an entered year is leap year or not.	CO 2
2.8	2	Conditional Statements	Write a Program to check whether an alphabet entered by the user is a vowel or a constant.	CO 2
2.9	2	Conditional Statements	Write a program to print day according to the day number entered by the user.	CO 2
2.10	2	Conditional Statements	Write a program to print color name, if user enters the first letter of the color name.	CO 2
2.11	2	Conditional Statements	Write a program to Simulate Arithmetic	CO 2

			Calculator.	
2.12	2	Conditional	Write a menu driven program for calculating area	CO 2
		Statements	of different geometrical figures such as circle,	
			square, rectangle, and triangle.	
2.13	2	Conditional	WAP that accepts the marks of 5 subjects and	CO 2
		Statements	finds the percentage marks obtained by the	
			student. It also prints grades according to the	
			following criteria: Between 90-100% Print 'A', 80-	
			90% Print 'B', 60-80% Print 'C', 50-60% Print 'D',	
			40-50% Print 'E', Below 40% Print 'F'.	
2.14	2	Conditional	WAP to enter a character and then determine	CO 2
		Statements	whether it is a vowel, consonants, or a digit.	
2.15	2	Loops	Write a program to display all even numbers from	CO 2
			1 to 20	
2.16	2	Loops	Write a program to print all the Numbers Divisible	CO 2
			by 7 from 1 to 100.	
2.17	2	Loops	Write a program to print table of any number.	CO 2
2.18	2	Loops	Write a program to Find the Sum of first 50	CO 2
			Natural Numbers using for Loop.	
2.19	2	Loops	Write a program to calculate factorial of a given	CO 2
			number using for loop and also using while loop.	
2.20	2	Loops	Write a program to count the sum of digits in the	CO 2
			entered number.	
2.21	2	Loops	Write a program to find the reverse of a given	CO 2
			number.	
2.22	2	Loops	Write a program to Check whether a given	CO 2
			Number is Perfect Number.	
2.23	2	Loops	Write a program to Print Armstrong Number from	CO 2
			1 to 1000.	
2.24	2	Loops	Write a program to Compute the Value of X ⁿ .	CO 2
2.25	2	Loops	Write a program to Calculate the value of ⁿ C _r .	CO 2
2.26	2	Loops	Write a program to generate the Fibonacci Series.	CO 2
2.27	2	Loops	Write a program to check whether a given	CO 2
	1			

			Number is Palindrome or Not.	
2.28	2	Loops	Write a program to Check whether a given	CO 2
			Number is an Armstrong Number.	
2.29	2	Loops	Write a program to print all prime numbers from	CO 2
			1-500.	
2.30	2	Loops	Write a program to find the Sum of all prime	CO 2
			numbers from 1-1000.	
2.31	2	Loops	Write a program to display the following pattern:	CO 2
			* * * *	
			* * * *	
			* * * *	
			* * * * *	
			* * * *	
2.32	2	Loops		CO 2
			Write a program to display the following pattern:	
			*	
			* *	
			* * *	
			* * * *	
			* * * *	
2.33	2	Loops		CO 2
			Write a program to display the following pattern:	
			1	
			12	
			123	
			1234	
			12345	
2.34	2	Loops	Write a program to display the following pattern:	CO 2
			A	
			ВВ	
			ccc	
			DDDD	
			EEEEE	
	1			

2.35	2	Loops	Write a program to display the following pattern:	CO 2
			* * * *	
			* * * *	
			* * *	
			* *	
			*	
2.36	2	Loops	Write a program to display the following pattern:	CO 2
			12345	
			1234	
			123	
			12	
			1	
2.37	2	Loops	Write a program to display the following pattern:	CO 2
			*	
			* * *	
			* * * *	
			* * * * *	
2.38	2	Loops	Write a program to display the following pattern:	CO 2
			* * * * * * *	
			* * * * *	
			* * * *	
			* * *	
			*	
2.39	2	Loops	Write a program to display the following pattern	CO 2
			(Pascal Triangle):	
			1	
			1 1	
			1 2 1	
			1 3 3 1	
			1 4 6 4 1	
			1 5 10 10 5 1	
2.40	2	Loops	Write a program to display the following pattern:	CO 2

			1	
			23	
			456	
			7 8 9 10	
2.41	2	Loops	Write a program to display the following pattern:	CO 2
		·	ABCDEFGFEDCBA	
			ABCDEF FEDCBA	
			ABCDE EDCBA	
			A B C D D C B A	
			A B C C B A	
			A B B A	
			A A	
2.42	2	Loops	Write a program to display the following pattern:	CO 2
	_	20060	*	00 2
			* *	
			* * *	
			* * * *	
			* * * *	
			* * * *	
			* * * *	
			* * *	
			* *	
			*	
2.43	2	Loops	Write a program to display the following pattern:	CO 2
			0 0	
			01 10	
			010 010	
			0101 1010	
			0101001010	
2.44	2	Loops	Write a program to display the following pattern:	CO 2

			A	
			B C	
			DEF	
			GHIJ	
			KLMNO	
2.45	2	Loops	Write a program to display the following pattern:	CO 2
			A	
			BAB	
			CBABC	
			DCBABCD	
			EDCBABCDE	
2.46	2	Loops	Write a program to Find the Sum of A.P Series.	CO 2
2.47	2	Loops	Write a program to Find the Sum of G.P Series.	CO 2
2.48	2	Loops	Write a program to Find the Sum of H.P Series.	CO 2
2.49	2	Loops	Write a program to print the following sequence	CO 2
			of integers. 1, 2, 4, 8, 16, 32	
2.50	2	Loops	Write a program to find the Sum of following	CO 2
			Series:	
			(1*1) + (2*2) + (3*3) + (4*4) + (5*5) + +	
			(n*n)	
2.51	2	Loops		CO 2
			Write a program to find the Sum of following	
			Series:	
			(1^1) + (2^2) + (3^3) + (4^4) + (5^5) + +	
			(n^n)	
2.52	2	Loops	Write a program to find the Sum of following	CO 2
			Series:	
			(1!/1) + (2!/2) + (3!/3) + (4!/4) + (5!/5) + + (n!/n)	
2.53	2	Loops	Write a program to print the following Series:	CO 2
			1, 2, 3, 6, 9, 18, 27, 54, upto n terms	
2.54	2	Loops	Write a program to print the following Series:	CO 2
			2, 15, 41, 80, 132, 197, 275, 366, 470, 587	
	<u>i</u>	1	1	

2.55	2	Loops	Write a program to print the following Series:1, 3,	CO 2
			4, 8, 15, 27, 50, 92, 169, 311	
2.56	2	Loops	Write a program to Convert the given Binary	CO 2
			Number into Decimal.	
2.57	2	Loops	Write a program to Convert Binary to	CO 2
			Hexadecimal.	
2.58	2	Loops	Write a program to find out L.C.M. of two	CO 2
			numbers.	
2.59	2	Loops	Write a program to find out H.C.F. of two	CO 2
			numbers.	
2.60	2	Loops	Python Program to Accept Three Digits and Print	CO 2
			all Possible Combinations from the Digits.	
2.61	2	Loops	Python Program to Print Odd Numbers within a	CO 2
			Given Range.	
2.62	2	Loops	Python Program to Find the Smallest Divisor of an	CO 2
			Integer.	
2.63	2	Loops	Python Program to Count the Number of Digits in	CO 2
			a Number	
2.64	2	Loops	Python program to find GCD between two given	CO 2
			integer numbers.	
3.1	3	Functions	Write a Python function to find the Max of three	CO3
			numbers.	
3.2	3	Functions	Write a Python function to sum all the numbers in	CO3
			a list.	
			Sample List: (8, 2, 3, 0, 7)	
			Expected Output : 20	
3.3	3	Functions	Write a Python program to reverse a string.	CO3
			Sample String: "1234abcd"	
			Expected Output : "dcba4321"	
3.4	3	Functions	Write a Python function to check whether a	CO3
			number falls in a given range.	
3.5	3	Functions	Write a Python function that accepts a string and	CO3
			calculate the number of upper-case letters and	
	Ĭ.	1		

			lower-case letters.	
			Sample String: 'The quick Brow Fox'	
			Expected Output :	
			No. of Upper case characters : 3	
			No. of Lower case Characters : 1	
3.6	3	Functions	Write a Python function that takes a number as a	CO3
			parameter and check the number is prime or not.	
3.7	3	Functions	Write a Python function that checks whether a	CO3
			passed string is palindrome or not.	
3.8	3	Functions	Write a Python function that prints out the first n	CO3
			rows of Pascal's triangle.	
3.9	3	Functions	Write a Python function that accepts a hyphen-	CO3
			separated sequence of words as input and prints	
			the words in a hyphen-separated sequence after	
			sorting them alphabetically.	
			Sample Items: green-red-yellow-black-white	
			Expected Result: black-green-red-white-yellow	
3.10	3	Functions	Python function to convert height (in feet and inches) to centimeters	CO3
3.11	3	Functions	Python function to Convert Celsius to Fahrenheit.	CO3
3.12	3	Functions	Implement a function to check if two strings are	CO3
			anagrams of each other.	
3.13	3	Functions	Python function to display all the Armstrong	CO3
			number from 1 to n.	
3.14	3	Recursion	Write a program using recursion to compute	CO3
			factorial of a given number.	
3.15	3	Recursion	Write a program to print Fibonacci Series using	CO3
			recursion.	
3.16	3	Recursion	Write a program to calculate sum of numbers 1 to	CO3
			N using recursion.	
3.17	3	Recursion	Write a program to Find Sum of Digits of the	CO3
			Number using Recursive Function.	
3.18	3	Recursion	Write a program to print Tower of Hanoi using	CO3

			recursion.	
3.19	3	Recursion	Python Program to Determine How Many Times a	CO3
			Given Letter Occurs in a String Recursively	
3.20	3	Recursion	Python Program to Find the Binary Equivalent of a	CO3
			Number Recursively	
3.21	3	Recursion	Python Program to Find the GCD of Two Numbers	CO3
			Using Recursion	
3.22	3	Recursion	Python Program to Find the Power of a Number	CO3
			Using Recursion	
3.23	3	Recursion	WAP to compute the sum of all the elements of	CO3
			the list using reduce() function.	
3.24	3	Modules and	A) Write a program to create a module and import	CO3
		Pacakges	the module in another python program.	
3.25	3	Modules and	Write a program program to import all objects	CO3
		Pacakges	from a modules, specific objects from module and	
			provide custom import name to the imported	
			object from the module.	
3.26	3	Modules and	Create a python package having atleast two	CO3
		Pacakges	modules in it.	
3.27	3	Modules and	Create a python package having atleast one	CO3
		Pacakges	subpackage in it.	
4.1	4	String	Python program to check whether the string is	CO 4
			Symmetrical or Palindrome	
4.2	4	String	Ways to remove i'th character from string in	CO 4
			Python	
4.3	4	String	Python program to Check if a Substring is Present	CO 4
			in a Given String	
4.4	4	String	Find length of a string in python (4 ways)	CO 4
4.5	4	String	Python program to print even length words in a	CO 4

			string	
4.6	4	String	Python program to accept the strings which contains all vowels	CO 4
4.7	4	String	Remove all duplicates from a given string in	CO 4
			Python	
4.8	4	String	Python program to Maximum frequency character	CO 4
			in String	
4.9	4	String	Python Program to Replace all Occurrences of 'a'	CO 4
			with \$ in a String	
4.10 4 String	Python Program to Form a New String where the	CO 4		
			First Character and the Last Character have been	
			Exchanged	
4.11	4	String	Python Program to Count the Number of Vowels	CO 4
			in a String	
4.12	4	String	Python Program to Take in a String and Replace	CO 4
			Every Blank Space with Hyphen	
4.13	4.13 4 Stri	String	Python Program to Calculate the Length of a	CO 4
			String Without Using a Library Function	
4.14	4	String	Python Program to Remove the Characters of Odd	CO 4
			Index Values in a String	
4.15	4	String	Python Program to Calculate the Number of	CO 4
			Words and the Number of Characters Present in a	
			String	
4.16	4	String	Python Program to Take in Two Strings and	CO 4
			Display the Larger String without Using Built-in	
			Functions	
4.17	4	String	Python Program to Check if a String is a Pangram	CO 4
			or Not	
			(A pangram is a sentence that uses all 26 letters of	
			the English alphabet at least once. like" The quick	
			brown fox jumps over the lazy dog")	
4.18	4	String	Python Program to Accept a Hyphen Separated Sequence of Words as Input and Print the Words in a Hyphen-Separated Sequence after Sorting	CO 4

			them Alphabetically	
4.19	4	String	Python Program to Form a New String Made of	CO 4
			the First 2 and Last 2 characters From a Given	
			String	
4.20	4	String	Python Program to Count the Occurrences of Each	CO 4
			character in a Given String Sentence	
4.21	4	String	Python Program to Check if a Substring is Present	CO 4
			in a Given String	
4.22	4	String	Python Program to Find the Most Repeated Word	CO 4
			in a String.	
4.23	4	Regular Expression	Write a python program to check the validity of a	CO 4
			password given by the user. The password should	
			satisy the following criteria:	
			i) Contain atleast 1 letter between a and z.	
			ii) Contain atleast 1 number between 0 and	
			9.	
			iii) Contain atleast 1 letter between A and Z.	
			iv) Contain atleast 1 character from \$,#,@.	
			v) Maximum length of password 6.	
			vi) Maximum length of password:12.	
4.24	4	Regular Expression	Write a python program to validate mobile	CO 4
			number.	
4.25	4	Regular Expression	Given an input file which contains a list of names	CO 4
			and phone numbers separated by spaces in the	
			following:	
			i) Phone number contains a 3- or 2-digit area	
			code and a hyphen followed by an 8-digit	
			number.	
			ii) Find all names having phone number with	
			a 3digit area code using regular	
			expression.	
4.26	4	List	Program to interchange first and last elements in	CO 4
			a list	

4.27	4	List	WAP to find min, max and average of elements of	CO 4
			a list having numeric data	
4.28	4	List	Program to check if element exists in list	CO 4
4.29	4	List	Program for Reversing a List	CO 4
4.30	4	List	Program to Multiply all numbers in the list	CO 4
4.31	4	List	Program to find smallest and largest number in a	CO 4
			list	
4.32	4	List	Program to find second largest number in a list	CO 4
4.33	4	List	Program to print all even numbers in a range	CO 4
4.34	4	List	Program to print all negative numbers in a range	CO 4
4.35	4	List	Program to Remove multiple elements from a list	CO 4
			in Python	
4.36	4	List	Program to Cloning or Copying a list	CO 4
4.37	4	List	Program to Count occurrences of an element in a	CO 4
			list	
4.38	4	List	Program to find Cumulative sum of a list	CO 4
4.39	4	List	Program to Break a list into chunks of size N in	CO 4
			Python	
4.40	4	List	Python Program to transpose of Matrix.	CO 4
4.41	4	List	Python Program to Add Two Matrices.	CO 4
4.42	4	List	Python Program to Multiply Two Matrices.	CO 4
4.43	4	List	Program to get K th Column of Matrix	CO 4
4.44	4	List	WAP to print all even numbers of a list using list	CO 4
			comprehension.	
4.45	4	List	WAP that prompts user to enter an alphabet and	CO 4
			then print all the words that starts with that	
			alphabet from the list of words.	
4.46	4	List	WAP to transpose a given matrix using list	CO 4
			comprehension.	
4.47	4	List	Print All the characters of a string using list	CO 4
			Comprehension	
4.48	4	List	Write a program to calculate square of numbers	CO 4
			upto n using list comprehension.	

4.49	4	Tuple	Python program to Find the size of a Tuple	CO 4
4.50	4	Tuple	Python – Maximum and Minimum K th elements in	CO 4
			Tuple	
4.51	4	Tuple	Create a list of tuples from given list having	CO 4
			number and its cube in each tuple	
4.52	4	Tuple	Python – Flatten tuple of List to tuple	CO 4
4.53	4	Set	Python Program to Count the Number of Vowels	CO 4
			Present in a String using Sets	
4.54	4	Set	Python Program to Check Common Letters in Two	CO 4
			Input Strings	
4.55	4	Set	Python Program that Displays which Letters are in	CO 4
			the First String but not in the Second	
4.56	4	Set	Python Program that Displays which Letters are	CO 4
			Present in Both the Strings	
4.57	4	Set	Python Program that Displays which Letters are in	CO 4
			the Two Strings but not in Both	
4.58	4	Dictionary	Python Program to Add a Key-Value Pair to the	CO 4
			Dictionary	
4.59	4	Dictionary	Python Program to Concatenate Two Dictionaries	CO 4
			into One.	
4.60	4	Dictionary	Python Program to Check if a Given Key Exists in a	CO 4
			Dictionary or Not	
4.61	4	Dictionary	Python Program to Generate a Dictionary that	CO 4
			Contains Numbers (between 1 and n) in the Form	
			(x,x*x).	
4.62	4	Dictionary	Python program to create an instance of an	CO 4
			Ordered dict using a given dictionary. Sort the	
			dictionary during the creation and print the	
			members of the dictionary in reverse order.	
4.63	4	Dictionary	Python Program to Sum All the Items in a	CO 4
			Dictionary	
4.64	4	Dictionary	WAP to create dictionary which has characters of	CO 4
			given string as keys and frequency of characters as	

			values.	
4.65	4	Dictionary	Python Program to Multiply All the Items in a	CO 4
			Dictionary	
4.66	4	Dictionary	Python Program to Remove the Given Key from a	CO 4
			Dictionary	
4.67	4	Dictionary	Python Program to Form a Dictionary from an	CO 4
			Object of a Class	
4.68	4	Dictionary	Python Program to Map Two Lists into a	CO 4
			Dictionary	
4.69	4	Comprehension	Write a program Filtering even numbers from a	CO 4
			list using tuple comprehension	
4.70	4	Comprehension	Creating a list of tuples from two lists using	CO 4
			comprehension function	
4.71	4	Comprehension	Extracting the first character from each word in a	CO 4
			list of strings	
4.72	4	Comprehension	Swapping keys and values in a dictionary	CO 4
4.73	4	Comprehension	Filtering even numbers from a dictionary:	CO 4
4.74	4	Comprehension	Write a Program to calculate square of number	CO 4
			using dictonary comprehension	
5.1	5	File handling and Exceptional	Python program to read file word by word	CO 5
F 2	_	Handling		
5.2	5	File handling and Exceptional	Python program to read character by character	CO 5
		Handling	from a file	
5.3	5	File handling and Exceptional	Python – Get number of characters, words, spaces	CO 5
		Handling	and lines in a file	
5.4	5	File handling and Exceptional	Program to Find 'n' Character Words in a Text File	CO 5
5.5	5	Handling File handling and	Python Program to obtain the line number in	CO 5
		Exceptional	which given word is present	
5.6	5	Handling File handling and	Count number of lines in a text file in Python	CO 5
2.3		Exceptional	Count number of fines in a text file in Fytholi	CO 3
5.7	-	Handling	Duthon Drogram to remove lines starting with a	CO 5
5./	5	File handling and Exceptional	Python Program to remove lines starting with any	CO 5
		Handling	prefix	

5.8	5	File handling and Exceptional	Python Program to Eliminate repeated lines from	CO 5
		Handling	a file	
5.9	5	File handling and	Python Program to read List of Dictionaries from	CO 5
		Exceptional Handling	File	
5.10	5	File handling and	Python – Append content of one text file to	CO 5
		Exceptional Handling	another	
5.11	5	File handling and	Python program to copy odd lines of one file to	CO 5
		Exceptional Handling	other	
5.12	5	File handling and Exceptional Handling	Python Program to merge two files into a third file	CO 5
5.13	5	File handling and	Python program to Reverse a single line of a text	CO 5
		Exceptional Handling	file	
5.14	5	File handling and	Python program to reverse the content of a file	CO 5
		Exceptional Handling	and store it in another file	
5.15	5	File handling and	Python Program to handle divide by zero	CO 5
		Exceptional Handling	exception.	
5.16	5	File handling and Exceptional Handling	WAP to handle multiple exception.	CO 5
5.17	5	File handling and	Python program to combine each line from first	CO 5
		Exceptional Handling	file with the corresponding line in second file.	
5.18	5	File handling and	Write a program to copy the contents of one file	CO 5
		Exceptional Handling	to another.	
5.19	5	File handling and Exceptional Handling	Write a program to print First 5 line in a file	CO 5
5.20	5	File handling and	a) Write a program to catch the following	CO 5
		Exceptional Handling	exception:	
			i) Value error	
			ii) Index error	
			iii) Name error	
			iv) Type error	
			v) Divide zero error	
			b) Write a program to create user defined	
			exceptions.	

c) Write a program to understand the use of else and finally block with try block. d) Write a python program that uses raise
and exception class to throw an exception.

B. TechSecond Semester				
Branch- CS/ CSE/CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI)/ ME/M. Tech (Integrated)/ BT				
Subject Code-BCSE0252Z	L - T - P			
	0 –0 - 6			
Subject Name- Advanced Python	No. of hours- 78 hours			

Course Objective- To become familiar with Python's Object-Oriented Concepts, functional programming And create GUI application and to gain the knowledge of Python libraries.

Course Outcome -

- **CO1** Implement classes and create instances in python
- **CO2-** Implement GUI based Python application
- **CO3-** Use Python libraries for data handling.
- **CO4** Analyze data using visualization libraries.
- CO5- Analyze web scraping application for real world data

Course Content

Unit	Module	Topics Covered	Pedagogy	Lectur e Requir ed (T=L+P)	Aligned Practical/Assignm ent/Lab	CO Mappi ng
	Classes and	Introduction: Python	Lecture , Hands-on	4(3+1)	Learn to create python classes and	1
	Objects	Classes and	exercise,		objects.	
		objects,	Demonstra			
Unit 1		User-Defined	tion,			
		Classes, Class	practical			
		Variables and	lab			
		Instance				
		Variables				

		Instance methods, Class method, static methods,		4(2+2)	Perform different types of class methods.	1
		constructor in python, parametrized constructor, Magic Methods in python,		3(3+2)	Create a constructor to initialize an object in Python, Different types of constructors, Constructor overloading and chaining	1
		Object as an argument, Instances as Return Values, namespaces,		2(1+1)	Implementation of Object as an argument, Instances and namespace	1
		Introduction to inheritance and polymorphis m, Abstract Class, Introduction to Abstraction and Encapsulatio n		8(3+5)	Implementing inheritance and types of polymorphism.	1
Unit 2	Functiona I and GUI Program ming	Functional Programmin g: Immutability, Closures and Decorators, generators	Hands-on exercise, Demonstra tion, lectures, practical lab	6(2+4)	Implementation of Decorators and generators	2

		Co-routines, iterators, Declarative programming		3(2+1)	Implement the functions of iterators and co routines	2
		GUI Programmin g: Intro to GUI Programming , Settling widgets in the window's interior, Numeric Widgets,		3(0+3)	Demonstration of GUI interface.	2
		Boolean Widgets, Selection Widgets, String Widgets, Date Picker, Color Picker, Container Widgets,		2(0+2)	Implement different types of GUI widgets.	2
		Creating a GUI Application, Tkinter, button, canvas		2(0+2)	Create GUI application using Tkinter and components.	2
Unit 3	Libraries for Data Handling	NumPy: Basic Operation, Indexing, slicing and Iterating	Lecture, Hands-on exercise, Demonstra tion, practical lab	3(1+2)	Demonstration on numpy, and mathematical operations on numpy.	3
		Multidimens ional arrays, NumPy Data types, Reading and writing data		3(1+2)	Implementation of Multi-dimensional array.	

		on Files				
		SciPy: Introduction to SciPy, Create function, modules of SciPy.		3(1+2)	Learn to demonstrate the SciPy libraries.	
		Pandas: Series and Data Frames, Grouping, aggregation, Merge Data Frames,		3(1+2)	Learn to demonstrate the use of pandas, data frames	
		Generate summary tables, Group data into logical pieces, Manipulation of data		3(1+2)	Creating tables and groups.	
Unit 4	Libraries in Data Visualizat ion	Matplotlib: Scatter plot, Bar charts, histogram, Stack charts	Lecture, Hands-on exercise, Demonstra tion, practical lab	3(1+2)	Learn to demonstrate the different visualization methods.	4
		Legend title Style, Figures and subplots,		1(0.5+ 0.5)	Implementation on charts and figures.	4
		Plotting function in pandas, Labelling and arranging figures, Save plots.		3(1+2)	Implementation on plots and figures.	4

		Seaborn:		3(1+2)	Implementation of	4
				3(1+2)	=	4
		style			seaborn library	
		function,				
		color				
		palettes,				
		heatmaps				
		distribution,				
		plots,				
		category				
		plot,				
		regression				
		plot				
		Plotly:		2(1+1)	Implementation of	4
		Lineplots ,		, ,	different types of	
		Areaplots,			plots.	
		Scatterplots,				
		Bubbleplots,				
		Stacked bar				
		charts,				
		Grouped bar		2(1+1)	Implementation of	4
		charts, Pie		2(1:1)	charts.	-
		charts,			Citarts.	
		Tables,				
		Dashboards				
		Web	Locturo	3(1+2)	Loarn to coran the	5
			Lecture,	3(1+2)	Learn to scrap the)
	Web	Scraping:	Hands-on		data.	
I I	Scraping	Introduction,	exercise,			
	with	Web	Demonstra			
	Python	Crawling v/s	tion,			
		Web	practical			
		Scraping,	lab			
		Uses of Web				
		Scraping,				
Unit 5		Components				
		of a Web				
		Scraper,				
		working of a				
		Web Scraper,				
		Crawl, Parse				
		and				
		Transform				
		Store the				
		Data				

Beautiful Soup: Introduction to Beautiful Soup library, Accessing Tags, Navigable Strings, Navigating and searching with Beautiful Soup, Web Scraping	3(1+2)	Demonstration of web scrapping using Beautiful Soup.	5
Example: Scraping Flipkart Website	4(1+3)	Learn to scrapping of Flipkart website.	5
Introduction to Github	2(1+1)	Implementation of Projects on Github.	5

References-

Text Books:

- **1.** Magnus Lie Hetland, "Beginning Python-From Novice to Professional"—Third Edition, Apress
- 2. Peter Morgan, Data Analysis from Scratch with Python, Al Sciences
- **3.** Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016
- 4. Miguel Grinberg, Developing Web applications with python, OREILLY

Reference Books:

- **1.** Dusty Phillips, Python 3 Object-oriented Programming Second Edition, O'Reilly
- 2. Burkhard Meier, Python GUI Programming Cookbook Third ,Packt
- **3.** DOUG HELLMANN, THE PYTHON 3 STANDARD LIBRARY BY EXAMPLE, :Pyth 3 Stan Libr Exam _2 (Developer's Library) 1st Edition, Kindle Edition
- **4.** Kenneth A. Lambert, —Fundamentals of Python: First Programs *9*, CENGAGE Learning, 2012.

Links:		
	Unit	https://nptel.ac.in/courses/106/106/106106145/
	1	
	Unit	https://www.python-
	2	course.eu/python3_inheritance.php
	Unit	https://realpython.com/courses/functional-
	3	programming-python/
	Unit	https://realpython.com/python-gui-tkinter/
	4	
	Unit	https://nptel.ac.in/courses/106/107/106107220/
	5	https://nptel.ac.in/courses/106/106/106106212/

B.TECH FIRST YEAR						
Course Code	BCSBS0103Z	L	T	P	Credit	
Course Title	Fundamentals of Computer Science	3	0	0	0	
Common abiantima						

Course objective:

The course covers various operations, conditional statements and looping constructs in C. The course aims to solve complex problems using functions and arrays in C.

Pre-requisites:Basic Knowledge of Computer

Course Contents / Syllabus

UNIT-I General problem Solving concepts 5 hours

Algorithm, and Flowchart for problem solving with Sequential Logic Structure, Decisions and Loops. Programming using C: applications of C programming, Structure of C program, Overview of compilation and execution process in an IDE, transition from algorithm to program, Syntax, logical errors and Run time errors, object and executable code

UNIT-II Imperative languages & Operators 7 hours

Introduction to imperative language; syntax and constructs of a specific language (ANSI C)

Types Operator and Expressions with discussion of variable naming and Hungarian Notation: Variable Names, Data Type and Sizes (Little Endian Big Endian), Constants, Declarations, Arithmetic Operators, Relational Operators, Logical Operators, Type Conversion, Increment Decrement Operators, Bitwise Operators, Assignment Operators and Expressions, Precedence and Order of Evaluation, proper variable naming and Hungarian Notation.

UNIT-III Control Flow

6 hours

Control Flow with discussion on structured and unstructured programming: Statements and Blocks, If-Else-If, Switch, Loops – while, do, for, break and continue, goto labels, structured and un-structured programming.

UNIT-IV Functions and Program Structure

8 hours

Functions and Program Structure with discussion on standard library: Basics of functions, parameter passing and returning type, C main return as integer, External, Auto, Local, Static, Register Variables, Scope Rules, Block structure, Initialization, Recursion, Pre-processor, Standard Library Functions and return types.

UNIT-V Pointers and Arrays

8 hours

Pointers and address, Pointers and Function Arguments, Pointers and Arrays, Address Arithmetic, character Pointers and Functions, Pointer Arrays, Pointer to Pointer, Multi-dimensional array and Row/column major formats, Initialization of Pointer Arrays, Command line arguments, Pointer to functions, complicated declarations and how they are evaluated.

Structures: Basic Structures, Structures and Functions, Array of structures, Pointer of structures, Self-referral structures, Table look up, typedef, unions, Bit-fields

UNIT-VI Input and Output:

6 Hours

Standard I/O, Formatted Output – printf, Formated Input – scanf, Variable length argument list, file access including FILE structure, fopen, stdin, stdout and stderr, Error Handling including exit, perror and error.h, Line I/O, related miscellaneous functions.

Unix system Interface: File Descriptor, Low level I/O – read and write, open, create, close and unlink, Random access – seek, Discussions on Listing Directory, Storage allocator.

Programming Method: Debugging, Macro, User Defined Header, User Defined Library Function, makefile utility

Course outcome: At the end of course, the student will be able to

CO 1	Acquire a broad perspective about the uses of computers in engineering industry.	K2
CO 2	Understand the concept of computers, algorithm and algorithmic thinking.	K2

CO 3	Apply conditional statements and looping constructs.	К3
CO 4	Implement array and perform operations on it.	К3
CO 5	Understand the more advanced features of the C language	K2

Text Books

- 1. B. W. Kernighan and D. M. Ritchi, The C Programming Language, 1988, 2nd Edition, PHI.
- 2. B. Gottfried, Programming in C, Schaum Outline Series, 1996, 2nd Edition, McGraw Hill Companies Inc.

Reference Books

- 1. Herbert Schildt, C: The Complete Reference, 2000, 4th edition, McGraw Hill.
- 2. YashavantKanetkar, Let Us C, 2017, 15th edition, BPB Publications.

Subject Code- BCSBS0153Z	L T P
	0 0 4
Subject Name- Fundamentals of Computer Science	No. of Hours:
Lab	

Course Outcome-

- CO1- Read, understand and trace the execution of programs written in C language.
- CO2- Write the C code for a given algorithm.
- CO3- Implement Programs with pointers and arrays, perform pointer arithmetic, and use the pre-processor.
- CO4- Write programs that perform operations using derived data types.
- **CO5- Implement String Handling.**

Total No. of Practicals

List of Practicals

Lab No.	Unit	Topic	Program Logic Building	CO Mapping
1	I	Algorithm and flowcharts of small problems like GCD	 Algorithm to find the sum of two numbers Algorithm to find the smallest of two numbers Algorithm to print multiplication Table of a number Algorithm to find GCD of numbers. 	1
2	II & III	Structured code writing with: i. Small but tricky codes	 WAP in C to implement the use of all arithmetic operators. WAP in C to find the Area and Circumference of a circle, where radius r is input by user. WAP in C to swap the values of 2 variables without using third variable. WAP in C to print the digit at ones place of a number. WAP in C to calculate the total amount of money in the piggybank, given the coins of Rs 10, Rs 5, Rs 2 and Rs 1. 	1

			 6. WAP in C to Enter the marks of 5 subjects (i.e. Physics, Chemistry, Maths, Hindi & English) of a student & display the Total_Marks and Percentage and grade achieved. Grading Critria: percentage >= 90 then Grade A percentage >= 80 and <90 then Grade B percentage >= 70 and <80 then Grade C percentage >= 60 and <70 then Grade D else Grade E 7. WAP in C to check whether a year is Leap Year or not. 8. WAP in C to print day of week name using switch case. 9. WAP in C to print total number of days in a month using switch case. 10. WAP in C to calculate the sum of first 10 numbers. 11. WAP in C to print multiplication table of any number. 12. WAP in C to find sum of digits of a number. 14. WAP in C to reverse a number. 15. Pattern Printing programs. 	
3	IV	ii. Proper parameter passing	WAP in C to demonstrate call by value and call by reference.	1
4	V	iii. Command line Arguments	WAP in C to demonstrate command line arguments.	1
5	IV	iv. Variable parameter	 WAP in C to add two number using user defined function add(). WAP in C to find the largest of three number using user defined function largest() . WAP in C to calculate the factorial of a number using recursion. Program to calculate the exponent using recursion. 	2
6	V	v. Pointer to functions	 WAP in C that uses pointer to point address of a function. WAP in C that passes function as a parameter using pointer. 	2
7	IV	vi. User defined header	WAP in C to create a user defined header file and use it in to some other programs.	3
8	VI	vii. Make file utility	WAP in C to implement all make file utility commands.	3
9	IV	viii. Multi file program and user defined libraries	Program to demonstrate how to use multiple c files in one program.	4

10	V	ix. Interesting substring matching / searching programs	 C Program to Implement Pratt Algorithm for Patt C Program to Implement Searching Algorithm. C Program to Implement Method for Pattern Searching Sea	tern Searching. nt KMP Pattern 4 nt Rabin-Karp	
11	II	x. Parsing related assignments	 Create a program that to string in the form of operator operand2" (e.g 2") and parses it to perform corresponding mathematical Display the result to the 	"operand1 g., "5 + 3" or "10 * Form the atical operation.	

B.TECH FIRST YEAR							
Course Cod	le	BCSE0252Z	LTP	Credit			
Course Titl	e	Fundamentals of Computer Science Lab	0 0 4	0			
Suggested I	Suggested List of Experiments Co						
1. Algorithm a	and f	lowcharts of small problems like GCD	1	_			
2. Structured of	ode	writing with:	1	-			
i. Small but tri	cky	codes	1	-			
ii. Proper para	mete	er passing	1				
iii. Command	line	Arguments	1				
iv. Variable pa			2				
v. Pointer to fi				2			
vi. User define	ed he	eader	3				
vii. Make file	utilit	ty	3				
viii. Multi file	prog	gram and user defined libraries	4				
		string matching / searching programs	4				
x. Parsing rela	ted a	assignments	4				
Lab Course	e Ot	itcome:					
CO 1	Read	d, understand and trace the execution of programs written in C lang	guage.	K2			
		te the C code for a given algorithm.		K2			
CO 3	Imp	lement Programs with pointers and arrays, perform pointer arithme	etic, and	K3			
use the pre-processor.							
CO 4	Writ	te programs that perform operations using derived data types.		K2			
CO5	Impl	lement String Handling		K3			

B. TechSecond Semester					
Branch- CS/ CSE/CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI)/ ME/M.					
Tech (Integrated)/ BT					
Subject Code-BCSE0251Z L - T - P					
	0 – 0 - 6				
Subject Name- C Programming	No. of hours-60				

Course Objective-The objective of a C programming course is to provide students with a solid foundation in the C programming language. The course aims to familiarize students with the syntax, concepts, and principles of C programming, as well as develop their ability to write efficient and effective C code. They will be able to develop complex real-world applications.

Course outcomes:	
CO 1: Implement and trace the execution of conditional and iteration	K1
programs.	К3
CO 2: Implement and trace the execution of conditional and iteration	K3
programs.da	К3
CO 3: Acquire the knowledge of memory allocation and binding, array,	K4
structure to solve complex problems	
CO 4: Compare and contrast between Structure and union along with their	
applications	
CO5: Develop Complex real-world applications	

Course Content

Uni t	Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assta ignment/Lab	CO Mappin g
	Introductio n to Algorithm and C Program	Programmin g using C: Concepts of Algorithm and Flowchart, Translator and its types, Applications of C programmin g, Structure of C program, Overview of compilation and execution process in an IDE, transition from algorithm to program, Syntax, logical errors and Run time errors, object and executable code,	T3, R1, Chalk & Duster/PPT/Onli ne Programs	2+2	Basic Program in C	CO1
	Tokens & Operators	Keywords, identifiers,	T3, R1, Chalk & Duster/PPT/Onli	3+3	Basic Program in C	CO1

	1					
		constant,	ne Programs			
		data types.				
		Operators				
		and their				
		types,				
		Arithmetic				
		expressions				
		and				
		precedence:				
		Operators,				
		operator				
		precedence				
		and				
		associativity,				
		[·				
		type				
		conversion,				
		mixed				
		operands				
		if, else-if,				
		nested if -			Programs using Conditional Statement	
	Conditional	else, switch	T3, R1, Chalk &			CO1
	Branching	statements,		1+2		
		use of break,	Duster/PPT/Onli			
		and default	ne Programs			
		with switch				
		Concept of				
		loops, for,				
		while and				
	Iteration	do-while,			Duo anoma vaina	
	and	multiple loop	T3, R1, Chalk &	1+2	Programs using	CO1
	loops:	variables,	Duster/PPT/Onli	112	Looping Statement	CO1
		use of break	ne Programs			
		and continue				
		statements,				
		nested loop.				
		Concept of	T3, R1, Chalk &			
		Sub-	Duster/PPT/Onli			
		programmin	ne Programs			
		g, function,				
		types of				
	Functions:	functions,		3+3	Function Programs	CO2
		passing				
Ш		parameters				
		to functions:				
		call by value				
		Definition,				
		Definition,	T3, R1, Chalk &			
		Types of	Duster/PPT/Onli			
	Recursion	recursive	ne Programs	1+2	Recursion Programs	CO2
		functions,	. 6			
	L	Turiculoris,				

	Γ	Τ	<u> </u>			
		Tower of				
		Hanoi				
		problem,				
		scope of	T3, R1, Chalk &			
		variable,	Duster/PPT/Onli			
		local and	ne Programs			
		global				
		variables,				
		Nesting of			Drograms showing use	
	Storage:	Scope,		1+1	Programs showing use of Storage	CO2
		Storage			of Storage	
		classes:				
		Auto,				
		Register,				
		Static and				
		Extern				
		defining				
		and				
		declaring				
		pointer, pointer	54 50 54		Programs illustrating	
		arithmetic	R1, R3, R4		use of Pointers	
	Pointers:	and	Chalk &	2+2	Arithmetic/Addressing/	CO2
		scaling,	Duster/PPT/		Call by Reference	
		Pointer	Labs		j	
		Aliasing.				
		call by reference				
		reference				
		Array				
		notation and				
		representati				
		on (one and				
		two			Programs illustrating	
		dimensional)	R1, R3, R4		use of Pointers	
	Arraya:	, array using	Chalk &	2+2	Arithmetic/Addressing/	CO3
	7	pointers,	Duster/PPT/		Call by Reference	
		manipulating	Labs		can by reference	
		array				
		elements,2-D				
Ш		array s used				
		in matrix				
		computation.				
		Introduction,				
		initializing				
		strings,	 D1 D2 D4		TTCA 1 -1	
		accessing	R1, R3, R4 Chalk &		Use of Arrays both	
	Strings:	string	Duster/PPT/	2+3	Single and Multi-	CO3
		elements,	Labs		Dimensional.	
		Array of	Laus			
		strings,				
		Passing				
	i	<u>. </u>	1			

		strings to functions, String functions like Strcat, strcmp, strcpy and any other functions Introduction, Initializing, defining and declaring structure, accessing				
	Structure:	members, Operations on individual members, Operations on structures, Structure within structure, Array of structure	T1, T2, R1, R2 Chalk & Duster/PPT/ Labs	2+2	Program Based on structure implementation	CO4
IV	Union:	Introductio n, Initializing , defining and declaring structure, Accessing members, Operations on individual members, Operations on Union, Difference between Structure and Union	T1, T2, R1, R2 Chalk & Duster/PPT/ Labs	1+1		CO4
	Dynamic Memory Allocation	Introduction, Library functions— malloc, calloc, realloc and	T1, T2, R1, R2 Chalk & Duster/PPT/ Labs	1+1	Programs allocating memory during run time and manipulations	CO4

		free.				
	File Handling	Basics, File Types, File operations, File pointer, File opening modes, File handling functions, Command Line Arguments, File handling through command line argument, Record I/O in files	T1, T2, R1, R2 Chalk & Duster/PPT/ Labs	2+4	Implementation of Data Files and Command Line Arguments	CO5
V	Introductio n to Embedded Programmi ng	Introduction to Embedded System, Factors for Selecting the Embedded Programming Language, Difference Between C and Embedded C, Keyword, Datatypes, Components of Embedded Program, Program Structure, Basic concepts of Embedded Programming , Defining Macros, Types & File Inclusion, Pre-processor directives implementati on	T1, T2, R1, R2 Chalk & Duster/PPT/ Labs	2+4	Example on Embedded Programs	CO5

References-

Textbooks:

- (T1) Herbert Schildt, "C: The Complete Reference", Osbourne McGrawHill, 4th Edition, 2002.
- (T2) Computer Concepts and Programming in C, E Balaguruswami, McGrawHill
- (T3) Let Us C by Yashwant P.Kanetkar. BPB publication
- (T4) K.R Venugopal, "Mastering C", TMH
- (T5) Yashwant P. Kanetkar, "Working with C", BPB publication

Reference Books:

- (R1) The C programming by Kernighan Brain W.and Ritchie Dennis M., Pearson Education.
- (R2) Computer Science-A Structured Programming Approach Using C, by Behrouz A. Forouzan, Richard F. Gilberg, Thomson, Third Edition, Cengage Learning-2007.
- (R3) Computer Basics and C Programming by V.Rajaraman, PHI Learning pvt. Limited, 2015.
- (R4) Schrum's Outline of Programming with C by Byron Gottfried, McGraw-Hill
- (R5) Computer Fundamentals and Programming in C.Reema Thareja, Oxford Publication

Links:

E-Book Links:

- (E1)https://en.wikibooks.org/wiki/C Programming
- (E2)https://en.wikibooks.org/wiki/A Little C Primer
- (E3) https://www.goodreads.com/book/show/6968572-ansi-c-programming

SYLLABUS

B. TECHFirst Semester	
BRANCH- Bio Technology	
SUBJECT CODE-BBT0101Z	L - T - P
	3-1-0
SUBJECT NAME- ELEMENTRY	No. of hours-42
MATHEMATICS	

Course Objective- The objective of this course is to familiarize the graduate engineers of Biotechnology with techniques in basic algebra, differential calculus, integration and solving Ordinary Differential Equations of first order. It aims to equip the students with standard concepts and tools from basic to intermediate level that will enable them to tackle more advanced level of mathematics and applications that they would find useful in their disciplines.

Course Outcome -

- **CO1** Apply concept of equation to solve quadratic equations and system of linear inequality in two variables.
- **CO2-** Apply the concept of differentiation to find the derivative of different type functions, rate of change and maxima and minima.
- **CO3-** Apply concept of integration to evaluate integrals and definite integrals.
- **CO4-** Apply the concept of differentiation and integration to find the solution of differential equations.
- CO5- Solve the problems of Profit, Loss, Number & Series, Coding & decoding and Algebra.

Course Content

Unit	Module	Topics Covered	Pedagogy	Lecture Required (T=L+P)	Aligned Practical/Assignment/Lab	CO Mapping
Unit 1	Algebra	Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system. Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the number line. Graphical solution of linear inequalities in two variables. Solution of system of linear inequalities in two variables graphically.	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment 1.1	CO1
Unit 2	Differential Calculus	Functions, Limit, Continuity and Differentiability. Definition of derivative, physical and geometrical significance of derivative, derivative by first principal. Derivative of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions, derivative of composite functions, chain rule, derivatives of inverse trigonometric functions, derivative of implicit function. Concept of exponential and logarithmic functions and their derivative. Logarithmic differentiation. Derivative of functions expressed in parametric forms. Second order derivatives. Applications of Derivatives: rate of change, maxima and minima (second derivative test only). Simple problems (that illustrate basic principles	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment-2.1 Assignment-2.2	CO2

		and understanding of the subject as well as real life situations).				
Unit 3	Integral Calculus	Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, only simple integrals of the type to be evaluated. Basic properties of definite integrals and evaluation of definite integrals. Applications of the Integrals: Applications in finding the area under simple curves, especially lines, areas of circles/parabolas/ellipses (in standard form only).	Class room Teaching, Smart Board, PPT, M- tutor.	10	Assignment-3.1	CO3
Unit 4	Differential Equations	Definition, order and degree, general and particular solutions of a differential equation. Formation of differential equation whose general solution is given. Solution of differential equations of first order and first degree by method of separation of variables, homogeneous differential equations of linear differential equation of the type: $\frac{dy}{dx} + py = q$, where p and q are functions of x.	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment-4.1	CO4
Unit 5	Aptitude-I	Simplification, Percentage, Profit, loss & discount, Average, Number & Series, Coding & decoding, Algebra.	Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment-5.1	CO5

References-

Text Books:

- 1. Mathematics Textbook for Class XI, NCERT Publication
- 2. Mathematics Part I Textbook for Class XII, NCERT Publication
- **3.** Mathematics Part II Textbook for Class XII, NCERT Publication
- **4.** Quantitative Aptitude by R.S. Aggrawal

Reference Books:

- Higher engineering mathematics by B.V.Ramana (Tata Macgraw Hill)
 Advanced modern engineering mathematics by Glyn james (pearson education)

Links:

Unit-1

https://www.youtube.com/watch?v=Ujs30gztM5E

- https://www.youtube.com/watch?v=9MFjoGm06dg
- https://www.youtube.com/watch?v=11Xri-tvd6g
- https://www.youtube.com/watch?v=NHx -vE-zQo
- https://www.youtube.com/watch?v=gI3y4OWlLO4

Unit-2

- https://youtu.be/hswdwcNhO0g
- https://youtu.be/EkkATH3W1Mo
- https://youtu.be/r031pzhBP5c
- https://www.youtube.com/watch?v=lTtsFrkBsOI
- https://www.youtube.com/watch?v=_9MVn-Jw2G4
- https://www.youtube.com/watch?v=HrymMfWU_x0
- https://www.youtube.com/watch?v=dEPr5D6CqQQ
- https://www.youtube.com/watch?v=XzIypjhzj8c
- https://www.youtube.com/watch?v=ZqHPcKq6VNI

Unit-3

- https://www.youtube.com/playlist?list=PLbu_fGT0MPstBzAW5gGWLltksM_yAs3si
- https://youtu.be/z0ajJjA3 Ns

Unit-4

- https://youtu.be/f-4tMNFUqyU
- https://youtu.be/AX 0jNDIi9I
- https://youtu.be/BHdXOPD4cvo
- https://youtu.be/OET0qwat150

Unit-5

https://www.GovernmentAdda.com

B. TechFirst Semester	
Branch- Bio Technology	
Subject Code-BBT0102Z	L - T - P
	3-1-0
Subject Name-Remedial Biology	No. of hours-40

Course Objective- To introduce students' basic knowledge about structure and function of biomolecules. develop understanding about cell biology, and nucleic acids and understand the morphology and anatomy of plants

Course Outcome -

CO1 -To understand the basics of living systems K1, K2

CO 2 To understand key common features of living organisms & its classification K1, K2

CO 3 To know the anatomy and functions of plants K1, K2

CO 4 To know the concepts of alleles and genes K1, K2

CO 5 To understand the plant physiology

Course Content

Unit	Module	Topics Covered	Pedagog Y	Lecture Require d (T=L+P)	Aligned Practical/Assignment/L ab	CO Mappin g
Unit 1	Cell Biology	The cell concept, structure of prokaryotic, eukaryotic cells, plant cells and animal cells, Structure and function of cell membrane, cell organelles and their function. Structure and use of compound microscope, Macro and micro molecules, Basic chemical constituents of living body. Carbohydrates-Classification of carbohydrates, functions of carbohydrates, Lipids-Classification and functions of lipids, Proteins-Structure and functions of proteins, Enzymes- Chemical nature, classification and properties of enzymes, mechanism of enzyme activity	Smart board, ppts	8	NA	CO1
Unit 2	Classificatio n of living organisms,	Classification of living organisms (Five kingdom classification, major groups and principles of classification in each kingdom), Salient features of kingdom Monera, Protista and Fungi. Importance of microbiology, Importance of microorganisms in various fields, Classification and features of microorganisms Systematic and binomial system of nomenclature, Concept of animal and plant classification.	Smart board, ppts	8	NA	CO 2

Unit 3	Morphology and anatomy of plants	Tissues in animal and plants, Morphology, anatomy and functions of different parts of plants: Root, stem, leaf, inflorescence, flower, fruit and seed, Concepts of botanical garden, herbaria, zoological park and museums.	Smart board, ppts	8	NA	соз
Unit 4	. Cell division and Genetics	Concepts of alleles and genes, Mendelian Experiments, Cell cycle (Elementary Idea), mitosis and meiosis, techniques to study mitosis and meiosis	Smart board, ppts	8	NA	CO14
Unit 5	Plant Physiology	Plant Physiology: Concepts of diffusion, osmosis, imbibitions, Movement of water, food, nutrients and gases, Photosynthesis, plant growth and development	Smart board, ppts	8	NA	CO5

References-

Text Books:

- 1. Biology-Textbook of Class XI, NCERT Publication
- 2. Biology-Textbook of Class XII, NCERT Publication
- 3. Together With Biology Study Material for Class 12

Reference Books: Biology 12th Edition by Raven and George Johnson and Kenneth Mason and Jonathan Losos and Tod Duncan. McGrawHill Publications 2. TEXTBOOK OF BIOTECHNOLOGY by PATNAIK, McGraw Hill 3. Basic Biotechnology 3rd Edition by Colin Ratledge& Bjorn Kristiansen, Cambridge University Press

Links: https://www.youtube.com/watch?v= WM2hJmjctl

https://www.youtube.com/watch?v=ZyWYID2cTK0&t=2s

https://www.youtube.com/watch?v=URUJD5NEXC8&t=28s

Unit 2 https://www.youtube.com/watch?v=qlOOGk7ryxc

https://www.youtube.com/watch?v=b8MfRHfV4Q4

Unit 3 https://www.youtube.com/watch?v=w6yyWyzwqhg

https://www.youtube.com/watch?v=Tl4bQEWN7cQ

https://www.youtube.com/watch?v=cBIGu60gJN0&list=PLKIDmFilyAnem1SOTmMKXyU y5TDoTVor

Unit 4 https://www.youtube.com/watch?v=EJEd3WhE5-I&t=62s

https://www.youtube.com/watch?v=HyJ86mS2Naohttps://www.youtube.com/watch?v

=UD0n3g

fZ0yg

Unit 5 https://www.youtube.com/watch?v=WVaRdAGV11M&t=1111s https://www.youtube.com/watch?v=9tf42ruBr4g&t=969shttps://www.youtube.com/watch?v=9tf

42ruBr4g&list=RDCMUCtKAQhsa1D_zKbc3yZmwARQ&start_radio=1&t=1012

B.TECH FIRST YEAR		
	edits	
Course Title Data Structures and Algorithms 3 1 0 0	0	
Course Objectives:		
The course covers the basic data structures, algorithm, and efficiency of algorithm, introduction to	array,	
stack, Queue, link list and their implementation. The course aims to give understanding of various		
searching and sorting algorithms and implementation of tree data structure.		
Pre-requisites: Basics of C programming &algorithm		
Course Contents / Syllabus		
UNIT-I Basic Terminologies and Introduction to Algorithm & Data Organization 8 ho	urs	
Algorithm specification, Recursion, Performance analysis, Asymptotic Notation - The Big-O, Om Theta notation, Programming Style, Refinement of Coding - Time-Space Trade Off, Testin Abstraction	-	
UNIT-II Linear Data Structure 8	3 hours	
Array, Stack, Queue, Linked-list and its types, Various Representations, Operations & Applica	ations of	
Linear Data Structures		
	3 hours	
Trees (Binary Tree, Threaded Binary Tree, Binary Search Tree, B & B+ Tree, AVL Tree, Splay Trees (Directed, Undirected), Various Representations, Operations & Applica Trees	ations of	
	3 hours	
Sequential Search, Binary Search, Comparison Trees, Breadth First Search, Depth First Search I Sort, Selection Sort, Shell Sort, Divide and Conquer Sort, Merge Sort, Quick Sort, Heapsort, Intro to Hashing		
	8 hours	
File: Organization (Sequential, Direct, Indexed Sequential, Hashed) and various types of accessing schemes Graph: Basic Terminologies, Representations, Operations and Applications of Graphs, Graph search and algorithms and complexity analysis.		
Course outcome: At the end of course, the student will be able to		
CO1 Analyzeand implement arrays, linked lists, stacks, queues to solve complex problems.	K3, K4	
CO2 Compare the computational efficiency of the sorting and searching algorithms.	K4	
CO3 Assessthe memory representation oftree and perform various operations on these data structure.		
structure.		
	K3	
CO4 Apply the concept of recursion to solve the real-world problems.	K3 K6	
CO4 Apply the concept of recursion to solve the real-world problems.		
CO4 Apply the concept of recursion to solve the real-world problems. CO5 Develop the algorithms using graph data structures.	K6	

- 1. Donald E. Knuth, The Art of Computer Programming: Volume 1: Fundamental Algorithms, 1968, Addison-Wesley.
- **2.** Thomas, H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, 2009, 3rd Edition, The MIT Press.
- **3.** Pat Morin, Open Data Structures: An Introduction (Open Paths to Enriched Learning), 2013, 31st Edition, UBC Press.

	B.TECH FIRST YEAR		
Course Code	BCSBS0253Z	LTP	Credit
Course Title	Data Structures and Algorithms Lab	0 0 4	0
Suggested List of	f Experiments		CO
	reate and display linear array		CO1
2. Program to in	nsert a data item at any location in a linear array		O1
3. Program to d	elete a data item from a linear array		CO1
	mplement linear search in an Array		CO1
	mplement binary search in the sortedarray without recursion	on	CO1, CO4
6. Program to in	mplement binary search in the sortedarray with recursion		CO1, CO4
7. Program to in	mplement bubble sort in a non-recursive way		CO1, CO4
8. Program to in	mplement selection sort in a non-recursive way		CO1, CO4
9. Program to in	mplement insertion sort in a non-recursive way		CO1, CO4
10. Program to in	mplement merge sort in a non-recursive way		CO1, CO4
11. Program to in	mplement merge sort in a recursive way		CO1, CO4
12. Program to in	mplement Queue Using array		CO1, CO3
13. Program to in	nplement Circular Queue Using array		CO1, CO3
14. Program to in	mplement Stack Operation using array		CO1, CO3
15. Program to in	nplement the Single Linked List		CO1
a. Insertione. Searching	f. Updation g. Sorting h. I	Reversal Merging	
16. Program to ira. Insertione. Searching	nplement the doubly Linked List b. Deletion c. Traversal d. I f. Updation g. Merging	Reversal	CO1
	mplement the circularly Single Linked List b. Deletion c. Traversal d. I	Reversal	CO1
	nplement Queue Using linked list		CO1,
10.5			CO3
19. Program to in	mplement Circular Queue Using linked list		CO1, CO3
20. Program to in	mplement Priority Queue Using linked list		CO1,
			CO3
21. Program to in	mplement Stack Operation using Linked list		CO1, CO3
22. Program to in	nplement Tower of Hanoi		CO2
23. Program imp	lementing Addition of two polynomials via Linked Lists		CO1
24. Program to in a. Insertion	nplement binary tree using linked list b. Deletion c. Traversal d. Se	earching	CO1, CO5
	nplement binary search tree using linked list	<u> </u>	CO1,

a. Insertio	n b. Deletion c. Traversal	d. Searching	CO5		
26. Program to implement heap sort in a non-recursive way			CO1,		
			CO4		
27. Program	to implement BFS algorithm		CO5		
28. Program	to implement DFS algorithm		CO5		
29. Program	to implement the minimum cost spanning tree		CO5		
30. Program	to implement the shortest path algorithm		CO5		
Lab Course (Lab Course Outcome: At the end of course, the student will be able to				
CO1	Write programs for solving mathematical proble	ms using array and	K3		
	linked list.				
CO2	Implement concept of recursion to solve complex pr	oblem.	K3		
CO3	Implement various operations of stack and queue day	ta structure.	K3		
CO4	Write efficient sorting, searching programs.		K3		
CO5	Implement program to solve real world problem to	using tree and graph	K3		
	data structure.				