NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme & Syllabus

For

Bachelor of Technology

Biotechnology

Second Year

(Effective from the Session: 2024-25)

Noida Institute of Engineering and Technology, Greater Noida (An Autonomous Institute) **Bachelor of Technology**

Biotechnology

EVALUATION SCHEME SEMESTER-III

Sl. No.	Subject Codes	Subject	Types of					ies	Eı Seme		Total	Credit		
			Subjects	L	T	P	CT	TA	TOTAL	PS	TE	PE	20002	
1	BBT0304	Biophysics and Bioinstrumentation	Mandatory	3	1	0	30	20	50		100		150	4
2	BBT0301	Biochemistry	Mandatory	3	1	0	30	20	50		100		150	4
3	BBT0302	Microbiology	Mandatory	3	0	0	30	20	50		100		150	3
4	BBT0303	Genetics and Molecular Biology	Mandatory	3	0	0	30	20	50		100		150	3
5	BBT0306	Plant and Animal Science	Mandatory	3	0	0	30	20	50		100		150	3
6	BBT0355	Bioinformatics	Mandatory	0	0	6				50		100	150	3
7	BBT0352	Biochemistry & Microbiology Lab	Mandatory	0	0	4				50		50	100	2
8	BBT0353	Genetics & Molecular Biology Lab	Mandatory	0	0	2				25		25	50	1
9	BBT0359	Internship Assessment	Mandatory	0	0	2				50			50	1
10	BNC0302/ BNC0301	Environmental Science/ AI & Cyber Ethics	Compulsory Audit	2	0	0	30	20	50		50		100	NA
		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs											
		TOTAL											1100	24

* List of MOOCs Based Recommended Courses for Second year (Semester-III) B. Tech Students

S. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	BMC0035	Microsoft Excel 2016	Infosys Wingspan (Infosys Springboard)	10 h 7 m	0.5
2	BMC0009	Probability and Statistics using Python	Infosys Wingspan (Infosys Springboard)	16 h	1

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-II and will be assessed during semester-III
- Compulsory Audit (CA) Courses (Non-Credit BNC0301/BNC0302)
 - All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - > The total and obtained marks are not added in the grand total.

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective, OE: Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

Noida Institute of Engineering and Technology, Greater Noida (An Autonomous Institute)

Bachelor of Technology Biotechnology EVALUATION SCHEME SEMESTER-IV

				T ==		11211-	<u>- ' </u>							T
Sl. No.	Subject Codes	Subject	Types of Subjects	Per	riods]	Evalua	tion Sc	hemes	En Semo		Tota	l	Credit
				L	T	P	CT	TA	Total	PS	TE	PE		
1	BBT0403	Fermentation Engineering	Mandatory	3	1	0	30	20	50		100		150	4
2	BASL0401	Technical Communication	Mandatory	2	1	0	30	20	50		50		100	3
3	BBT0404	Green Biotechnology and Pollution Abetment	Mandatory	3	0	0	30	20	50		100		150	3
4	BBT0402	Immunology & Immunotechnology	Mandatory	3	0	0	30	20	50		100		150	3
5	BBT0401	Analytical Techniques	Mandatory	2	0	0	30	20	50		50		100	2
6	BBT0455	Structural Bioinformatics	Mandatory	0	0	6				50		100	150	3
7	BBT0452	Immunology & Immunotechnology Lab	Mandatory	0	0	4				50		50	100	2
8	BBT0451	Analytical Techniques Lab	Mandatory	0	0	4				50		50	100	2
9	BASL0451	Technical Communication Lab	Mandatory	0	0	2				25		25	50	1
10	BBT0459	Mini Project	Mandatory	0	0	2				50			50	1
11	BNC0401/ BNC0402	AI & Cyber Ethics/ Environmental Science	Compulsory Audit	2	0	0	30	20	50		50		100	NA
		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs											
		TOTAL											1100	24

* List of MOOCs Based Recommended Courses for Second year (Semester-IV) B. Tech Students

S. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	BMC0036	Minitab - Data Analytics	Infosys Wingspan (Infosys Springboard)	5h 25m	0.5
2	BMC0037	Financial Modelling - Biotech Company	Infosys Wingspan (Infosys Springboard)	20h 18m	1.5

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-IV and will be assessed during Semester-V
- Compulsory Audit (CA) Courses (Non-Credit BNC0401/BNC0402)
 - All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - > The Total and obtained marks are not added in the Grand Total.

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective, OE: Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

Subje	ect Name: Biophysics and Bioinstrumentation L-T-P [3-1-0]				
Subject Code: BBT0304 Applicable in Department: Biotechnology					
Pre-re	equisite of Subject: Students should know about the basics of biology.				
	se Objective : The course provides the students with a comprehensive understanding of the principles and techniques used in lecular and cellular levels.	the study of biological systems			
Cours	se Outcomes (CO)				
Cours	se outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)			
CO 1	Learn about the phenomena of water transport across cellular membranes.	K1			
CO2	Understand the concept of electrical phenomena in excitable cells.	K1, K2			
CO3	Explore the general principles of signal transduction pathways involved in a wide range of physiological processes.	K1, K2, K3			
CO4	Understand the thermodynamics and kinetics of macromolecules	K1, K2			
CO5	Explore the application of electrophysiological methods in cellular physiology	K1, K2, K3			
Syllab	ous				

Unit No	Module Name	Topic covered	Pedagogy	Required	Practical/ Assignment/ Lab Nos	CO Mapping
11	Water transport across cell membranes	function and proteins of biological membranes, Membrane transport mechanisms (diffusion, facilitated diffusion, Osmosis, active transport, tonicity, hydrostatic pressure, dialysis)	Theoretical concepts, and interactive learning activities.	8	PBL: Demonstrations of membrane transport experiments using models	CO1

		Aquaporins: Structure, function and clinical significance, Water transport in artificial membranes and biomimetic systems				
2	Electrical Phenomena	Electrically Excitable Cells and their functions, Concept of Electrical Phenomena in Excitable Cells, Membrane Potential, The Ionic Hypothesis and Rules of Ionic Electricity (Nernst Equation and Goldmann-Hodgkin-Katz Equation), Generation of Action Potential, Transmission of Nerve Impulses (Electrical Synapse and Chemical Synapse), Conduction disorders.	Theoretical concepts and interactive learning activities.	8	ABL: Problem-solving session where students calculate equilibrium potentials for different ions using the equations.	CO2
3	Ion Channels & Transporters	Ligands and Receptors, General Principles of signal transduction, Intracellular Receptors, Cell Surface receptors (Ion channel linked receptors, G-protein coupled receptors and Enzyme linked receptors), Ion pumping (Sodium Potassium Pump), Transport ATPase, Glucose transporter, Rhodopsin and their function in vision.	Theoretical concepts, and interactive learning activities.	8	ABL: Role-playing activity where students act as ion channels and participate in the sequential opening and closing during action potential generation.	CO3
ZI.	Proteins and Nucleic		Theoretical concepts, and interactive learning activities.	10	ABL: Group discussion on the structural features and functions of each DNA form, followed by a comparison of their properties.	CO4
	Cell Dynamics and Electrophysiological Mothods	Molecular Motors: Actin, Myosin, Kinesin, Dynein, Intracellular movement, Cell migration: Types and mechanism, Mechanobiology and its importance in human health, Biophysics of Medical Imaging (computed tomography (CT), magnetic resonance imaging (MRI), Positron Emission Tomography (PET), Single neuron recording, patch-clamp recording, ECG, Brain activity recording	Theoretical concepts, and interactive learning activities.	10	ABL: Discuss the interpretation of ECG signals and their clinical relevance in diagnosing cardiac conditions.	CO5
Total				44		

Sr No	Book Details
1.	Introduction to Biophysics by Pranab Kumar Banerjee, S. Chand Publishing, 2008
Referei	nce Books
Sr No	Book Details
1.	Principles of Biochemistry: A.L. Lehninger, 8th edition, Nelson and Cox, McMillan Worth Publishers.
2.	Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 8th edition. Siegel GJ, Agranoff BW, Albers RW, et al., editors. Philadelphia: Lippincott-Raven; 1999.
3.	Molecular Biology of the Cell. 7th edition. Alberts B, Johnson A, Lewis J, et al. New York: Garland Science; 2002.
4.	Molecular Cell Biology. 9th edition. Lodish H, Berk A, Zipursky SL, et al. New York: W. H. Freeman; 2000.
5.	Neuroscience. 7th edition.Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001.
Links (Only Verified links should be pasted here)
https://v https://v https://v	www.youtu.be/eHV1s2g4s4o www.youtube.com/watch?v=J5pWH1r3pgU youtu.be/oxX2fq2DBBo?si=V5xVcAlJGq8lbXho www.youtube.com/watch?v=iWp9FVN7RIQ www.youtube.com/watch?v=Pl7nzXaVqak

https://www.youtube.com/watch?v=Y5JOW2eApUI https://www.youtube.com/watch?v=wQID2zmeWTQ

Subject N	ame: Biochemistry		L	-T-P [3-1-0]		
Subject C	ode: BBT0301		Applica	ble in Depart	ment: Biotechnolog	y
Pre-requi	site of Subject: Bas	ics of Biology and chemistry				
	bjective : The object	ive of this course is to understand the biochemical,	molecular and mechanistic	basis of cellul	ar constituents viz, ca	arbohydrates,
<u> </u>	utcomes (CO)					
Course ou	atcome: After comple	etion of this course students will be able to:				Bloom's Knowledge Level(KL)
CO1	Comprehend the ro	ole and importance of water, pH and buffers in biolo	ogical processes			K1
CO2	Explain and associ	ate the chemistry with carbohydrates, their function diseases.	and metabolism in the boo	dy and understa	and the biochemical	K2
CO3	Explain and associ basis of metabolic	ate the chemistry of fatty acids, their function and n diseases.	netabolism in the body and	to understand	the biochemical	K2
CO4		amino acids and protein structure and metabolism; associated techniques in research and industrial level		knowledge in	understanding and	K2
CO5	Identify and explain acquired learning.	n the structure and metabolism of nucleic acid and	elaborate associated resear	ch problems w	ith the help of	K2
Syllabus						
Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	Water, Buffers and Biochemical interactions:	Structure and properties of water, Ionization of wat and buffers, buffering mechanism, Henderson-Hass equation, Buffering against pH Changes in Biologic	selbalch Student oriented	6	-	CO1

		Systems: Phosphate buffer, Bicarbonate buffer, Chemical Bonds in biochemistry and their role in biological processes.				
2	Carbohydrates	Classification of carbohydrates, Glycosidic bonds, Structure and function of carbohydrates, Ring structure and mutarotation. Glucose metabolism: Glycolysis & oxidation of Pyruvate, TCA cycle, Gluconeogenesis, Pentose Phosphate Pathway. Etiology of Diabetes.	Assignment assessments, Visualizing using videos	8	-	CO2
14	Fatty acids and lipids	Structure and classification of fatty acids and lipids, nomenclature of lipids, Metabolism: Oxidation of fatty acids (beta oxidation, omega oxidation, alpha oxidation), carnitine shuttle, Biosynthesis of fatty acids. Electron transport chain and Oxidative phosphorylation. Etiology of Obesity.	Use of videos (digital learning)	8	-	CO3
4	Amino acids and peptides	Structure and classification, pKa and pI values of amino acids, Peptide bond, torsional angles in proteins-omega, phi and psi angle, Secondary structures: Alpha helix, beta sheets, Beta turns and Random coils, Ramachandran plot, Protein metabolism and function: Catabolism of proteins in body deamination, transamination, Urea cycle, Glucose Alanine cycle; Overview of amino acid biosynthesis- Role of Glutamine.		6	_	CO4
5	Nucleic acids	Purines and pyrimidines, Structure of nucleotides, Phosphodiester bond, Deoxyribonucleotides and ribonucleotides. Metabolism of Nucleotides: Purines & Pyrimidines synthesis: de Novo & salvage pathway, Conversion of nucleoside monophosphates to nucleoside triphosphates, Formation of deoxyribonucleotides. Catabolism & salvage of Purine and Pyrimidine nucleotides.	Visualizations using videos	6	-	CO5
Total				34		

Textbook	Textbooks				
Sr No	Book Details				
1.	Principles of Biochemistry: A.L. Lehninger, Nelson and Cox, McMillan Worth Publishers.				

	·
2	Harper's Biochemistry-Rober K. Murray, Daryl K. Grammer, McGraw Hill, Lange Medical Books. 25th edition.
3	Biochemistry: S.C. Rastogi – Third Edition; Tata McGraw Hill Education Pvt. Ltd. New Delhi.
Referen	ice Books
Sr No	Book Details
1	Biochemistry: Stryer, W. H. Freeman
2	Biochemistry: Voet and Voet, John Wiley and Sons, Inc. USA
Links (Only Verified links should be pasted here)
• 1	https://www.youtube.com/watch?v=WhLrKCXxp08
• 1	https://www.youtube.com/watch?v=OOc3zEgLLtk
• 1	https://nptel.ac.in/courses/102/105/102105034/

https://nptel.ac.in/courses/104/103/104103121/

(An Autonomous Institute) School of Biotechnology

Dlaam!a

Subject Name: Microbiology	L-T-P [3-0-0]
Subject Code: BBT0302	Applicable in Department: Biotechnology
Pre-requisite of Subject: Basic Biology and Cell Biology	

Course Objective: The course provides the students both conceptual and experimental background in the broad discipline of microbiology. The students will be having fundamental understanding of the microbial world, basic structure and functions of microbes, metabolism, nutrition, their diversity, physiology and relationship to environment and human health. To impart practical skills of isolation and manipulating conditions for their propagation.

Course Outcomes (CO)

Course	Course outcome: After completion of this course students will be able to: L		
CO1	Define the science of microbiology, its development and importance in human welfare.	K1	
CO2	Describe some of the general methods used in the study of microorganisms.	K1	
CO3	Understand the nutritional and physical importance of autotrophs, heterotrophs and chemotrophs	K1	
CO4	Recognize and illustratu structure and function of microbes and factors affecting microbial growth.	K2, K3	
CO5	Explain the role of microorganism in the Environment, Industry and Healthcare.	K2	

Syllabus

Unit No	Module Name	Topic covered	Pedagogy	Required	Practical/ Assignment/ Lab Nos	CO Mapping
1	•	Introduction to microbiology: history and scope of microbiology, major contribution and events in microbiology.	Motivation and	h	Activity 1: Microscope-Based	CO1

	microbiology	Classification and identification of microorganisms. Prokaryotes and eukaryotes, bacterial diversity	Direction of activity		Microbial Classification and Identification	
2	fine structure of	negative bacteria, characteristics of cellular (bacteria, lungi, algae, protozoa) and acellular (viruses) organisms. Identification of	Direction of activity	6	Activity 2: Microbial Colony Morphology Identification	CO2
3	VIICTODIAI requirements	Nutritional and physical requirements of autotrophs, heterotrophs, chemotrophs and lithotrophs, types of culture media, enumeration of microbial populations, pure culture and cultural characteristics.	Direction of activity and incidental Learning	8	Activity 3: Culturing and Enumerating Microbial Populations	CO3
4	Growth and Microbial	Physical and chemical agents for control of microbial growth, their mode of action, sterilization, disinfectants and antiseptics, chemotherapeutic agents, Maintenance and preservation of microbial cultures and its importance, culture banks.	Content based and Incidental Learning.		Activity 4: Testing the Efficacy of Disinfectants and Antiseptics	CO4
5	industrial and medical	Water microbiology- Sewage Treatment Plant, Microbiology of food- Single Cell Proteins, Cheese, Wine, Beer, probiotics. Bioremediation. Biofertilizer Major diseases caused by different microorganism, Methods for the determination of antimicrobial efficacy of natural products	Augmentation and Computational Learning	7	Activity 5: Microbial Analysis of Water and Food Samples	CO5
Total				35		

	extbooks				
Sr No	Book Details				
1.	1. Microbiology: Pelczar, Michael J. (Michael Joseph) 5th Edition.				
Reference	ce Books				
Sr No	Book Details				

Links (Only Verified links should be pasted here)

- Unit 1: https://www.youtube.com/watch?v=IiqpUJ4j_bs
- Unit 2: https://www.youtube.com/watch?v=FZyDZ3PLZ-4
- Unit 3: https://www.youtube.com/watch?v=U_7vjo5pJXQ
- Unit 4: https://www.youtube.com/watch?v=L5_6kAQBN5E
- Unit 5: https://www.youtube.com/watch?v=t2cQXfnwLQ0

Subje	ct Name: Genetics	s and Molecular Biology		L-	T-P [3-0-0]	
-	ct Code:BBT0303		A		Department: Biotechn	ology
Pre-re	equisite of Subject:	Basics of Biology, Biochemistry.				
get ins regula	ight the chemistry of tions.	rovide students the knowledge about fundamentals of genetics, more function of students and genetic materials, Process and mechanism of				
Course Outcomes (CO) Course outcome: After completion of this course students will be able to:						
Learn the fundamental principles of genetics and evaluate the genetic and allelic frequencies assumptions of Hardy-Weinberg equilibrium.						K1
CO2	Understanding the	process of mutation types, and techniques to detect mutation	ons, DNA repair	mechanism.		К3
CO3	Get insight into the	genetic materials, replication process in genetic materials in pro	karyotes and euk	aryotes.		K4
CO4	Get insight into the	transcription, mRNA processing and translations.				K4
CO5 Evaluate the gene expression and its regulation mechanism in detail.						K4
Syllab	us					
Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
	Qualitative and Quantitative Genetics	Fundamental principles of genetics, chi square test, gene interaction, multiple alleles, sex determination, sex linked inheritance, sex limited and sex, influenced inheritance, extra-chromosomal inheritance, Linkage, crossing over, recombination, gene mapping, two-point, three-point test crosses. Introduction to quantitative genetics, genotypic & allelic frequencies, calculating genotypic and allelic frequencies, Hardy-Weinberg equilibrium	Interactive lectures Hands-on activities Data analysis exercises	12	ABL: Understanding the numerical exercises and knowledge of chi-Squire test.	CO1

2	Chromosomes and Mutations	Chromosomes structures and functions, chromosome analysis, karyotyping, chromosomal microarray analysis, fluorescence in situ hybridization (FISH), genetic counselling, chromosomal disorders. Mutation, Types of mutations, Techniques to detect mutations, DNA repair mechanism.	Inquiry-Based Learning		ABL: To learn how cytogeneticists use karyotyping to detect and understand chromosomal abnormalities.	CO2
3	Genetic Material and DNA Replication		Differentiated Instruction		ABL: DNA replication mechanism through Simulation Game	CO3
4	Translation and	Transcription in prokaryotes and eukaryotes, Genetic code: Brief account, RNA processing, Translation in prokaryotes and eukaryotes.	Technology Integration	8	PBL: Polyacrylamide gel electrophoresis and estimation of molecular weight of proteins.	CO4
5	and Gene	Gene regulation, positive regulation, negative regulation, attenuation, post-transcriptional regulation; Eukaryotic transcription factors, enhancers, silencers, insulators, Post-translational modification and protein stability.	Visual Aids and Demonstrations	8	ABL: Gene Regulation mechanism through Simulation Game	CO5
Total						

	Textbooks				
Sr No	Book Details				
1.	Molecular Biology of the Cell 7th ed. 2022: Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walte; 6th edition New York: Garland Science.				
2	Cell and Molecular Biology-Concepts and Experiments 8th ed. 2015 :Gerald Karp et al. John Wiley.				
3	Lewin's GENES XII, 12th ed. 2023 by Jocelyn E. Krebs Elliott S. Goldstein and Stephen T. Kilpatrick				
Reference	ee Books				
Sr No	Book Details				
1	Molecular Cell Biology, 8th ed. 2016 by Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Anthony Bretscher, HiddePloegh, Angelika Amon and Kelsey C. Martin				
2	Genetics a conceptual approach, 6th ed. 2017 Benjamin A. Pierc WH freeman and, company, New York. Publisher				

Latest/classic research articles and reviews relevant to various topics of Genetics and Molecular Biology.

Links (Only Verified links should be pasted here)

- https://www.youtube.com/watch?v=WhLrKCXxp08
- https://www.youtube.com/watch?v=OOc3zEgLLtk
- https://nptel.ac.in/courses/102/105/102105034/
- https://nptel.ac.in/courses/104/103/104103121/

(An Autonomous Institute) School of Biotechnology

Rloom's

Subject Name:	Plant and Animal Science	L-T-P [3-0-0]
---------------	--------------------------	---------------

Subject Code: BBT0306 Applicable in Department: Biotechnology

Pre-requisite of Subject: Basic knowledge of biology.

Course Objective: The objective of this course is to understand plant structure, its development, physiology and metabolism in plants, plant development and their interaction with other organisms, human physiology and human reproduction.

Course Outcomes (CO)

Course	e outcome: After completion of this course students will be able to:	Knowledge Level(KL)
CO1	Describe and explain the concept of plant structure, organogenesis, morphogenesis, apoptosis and necrosis	K1,K2
CO2	Learn and understand the different aspects of plant physiology and plant breeding technology.	K1,K2
CO3	Understand and explain the different types of plant metabolisms and plant pathology	K1,K2
CO4	Explain and understand human physiological process.	K1, K2
CO5	Learn and understand the reproduction in animals and in plants.	K1, K2

Syllabus

Unit No	Module Name	Topic covered		Required	Practical/ Assignment/ Lab Nos	CO Mapping
1	structure and	of the Cell, Organogenesis in plants, Types and applications of organogenesis, Morphogenesis and factors affecting morphogenesis in plants. Apontosis—Types, causes, pathways and functions of apontosis	Smart board, PPTS, Reference Books,	8	ABL- Understand the internal and external structure of a plant. Identify different	CO1

					leaf structures and venation patterns.	
2	Plant physiology	Role and classification of secondary metabolites. Plant Hormones and Signaling	Smart board, PPTS, Reference Books, and textbooks	8	Abl- Observe the process of photosynthesis and understand the role of light.	CO2
3	Plant metabolism and plant pathology		Smart board, PPTS, Reference Books, and textbooks	8	ABL- Observe the effects of mycorrhizal fungi on plant growth.	CO3
4	Human physiology	Digestion-Alimentary canal and digestive glands, role of digestive enzymes, Breathing and respiration-Respiratory organs in animals, respiratory systems and mechanism of breathing and its regulations. Body fluids and circulation in animals. Excretory products and their elimination in animals. Chemical coordination and regulation in animals: Hormone synthesis, secretion, action, endocrine disorders and their treatment.	Smart board, PPTS, Reference Books and text books	8	ABL- Visualize the digestive process. 2. Measure and compare lung capacities.	CO4
5	Biology	Pre fertilization (Gametogenesis) and post fertilization events in animals and plants, Seed formation and seed germination, Embryo development in animals and plants, life history of model organisms like Drosophila, House fly, Mosquito.	Smart board,PPTS, Reference Books and text books	8	ABL- Understand asexual reproduction in plants. 2. Observe the stages of seed germination.	CO5
Total	Total			40		

Textboo	Textbooks		
Sr No	Book Details		
1.	Plant Science - by G. Pothiraj A. Elangovan		

2	Botany: An Introduction to Plant Biology, James D. Mauseth.
3	Biology of Plants by Peter H. Raven, Ray F. Evert, Susan E. Eichhorn, Hardcover: 875 pages, Publisher: W. H. Freeman
Referen	ce Books
Sr No	Book Details
1	Plant Biology (with InfoTrac) by Thomas L. Rost, Michael G. Barbour, C. Ralph Stocking, Terence M. Murphy, Paperback: 568 pages, Publisher: Brooks Cole
2	Introductory Plant Biology by Kingsley R Stern, Jim Bidlack, Shelley Jansky, Hardcover: 640 pages, Publisher: McGraw-Hill Science/Engineering/Math
3	Introductory Botany: Plants, People, and the Environment by Linda R. Berg, Hardcover: 466 pages, Publisher: Brooks Cole

Links (Only Verified links should be pasted here)

- Unit 1 https://www.youtube.com/watch?v=9UvlqAVCoqY
- Unit 2 https://www.youtube.com/watch?v=RT-w2xHVl_E&list=PLs7Y2nGwfz4FL4ZJgONHsl1qpAZPr3tJ
- Unit 3 https://www.youtube.com/watch?v=IWgNA9ynfGs
- Unit 4 https://www.youtube.com/watch?v=X3TAROotFfM https://www.youtube.com/watch?v=X3TAROo
- Unit 5 https://www.youtube.com/watch?v=3nB2RKW7oRs,

https://www.youtube.com/watch?v=83AabzOGAZ4

Subject 1	Subject Name: Bioinformatics L-T-P [0-0-6]		L-T-P [0-0-6]			
Subject	Code: BBT035	5	Appl	icable in De	partment: Biotechn	ology
Pre-requ	usite of Subject	Basics of Biology, Molecular Biology, Biochemistry.				
	•	derstand the basic concept of Bioinformatics, databases and sequence protein structure prediction and application of bioinformatics in drug	•	ide knowled	ge of scoring matrix,	phylogenetic
Course (Outcomes (CO)		<u> </u>			
Course o	outcome: After (completion of this course students will be able to:				Bloom's Knowledge Level(KL)
CO1	Understand the	theoretical basis behind bioinformatics and concept of Biological Dat	abases			K1, K2
CO2	Search database	s accessible on the internet for literature relating to Molecular Biolog	y and Biotechnolo	gy		K1, K2, K3
CO3	Understand sco	ring matrices and its types including PAM, BLOSUM series and mat	rices for nucleic ac	and prote	in sequences	K1, K2
CO4	Apply phyloger	y and its concepts in molecular evolution and different methods of Ph	nylogenetic tree co	nstruction		K1, K2, K3
CO5	Query biologica involving mole	l data, interpret and model biological information and apply this to the	e solution of biolo	gical probler	ms in any arena	K1, K2, K3
Syllabus						
Unit No	Module Name Topic covered Topic covered Pedagogy Required Assignment/ (L+P) Lab Nos				CO Mapping	
1	General Introduction	Exercise 1: Introduction to Bioinformatics; Human Genome Project Exercise 2: Biological databases: Nucleotide databases, Protein databases, Specialized databases	Encourage students to explore freely	12	PBL: 1. Perform a BLAST search with	CO1

	Exercise 3: Laboratory data submission and data retrieval tools. Exercise 4: Various file formats for biomolecular sequences: GenBank, EMBL, FASTA, GCG, MSF, nbrf-pir etc. Exercise 5: Basic concepts of sequence similarity: identity and homology Exercise 6: Definitions of homologues, orthologues, paralogues Exercise 7: Sequence patterns Exercise 8: Sequence profiles	available bioinformatics databases, tools, and resources to gain practical experience.		a given nucleotide or protein sequence. 2. Analyze the output, focusing on identity, E-value, and alignment scores. 3. Identify homologues, orthologues, and paralogues in the results.	
Database searching	Exercise 9 Sequence Alignment Exercise 10: Database Searching: Introduction, Evolutionary Basis of Sequence Alignment Exercise 11: Database similarity searching: FASTA, BLAST Exercise 12: Various versions of basic BLAST and FASTA, Exercise 13: Advance version of BLAST: PHI-BLAST and profile-based database searches using PSIBLAST Exercise 14: Multiple sequence alignment: progressive method and Iterative method Exercise 15: Applications of pairwise and multiple sequence alignment Exercise 16: Tools for multiple sequence alignment: CLUSTAL ω and Pileup (Algorithmic concepts)	Practical examples, and hands-on exercises to engage learners and reinforce their understanding.	12	PBL: Perform and analyze multiple sequence alignments to identify conserved regions and evolutionary relationships.	CO2
Scoring Matrices	Exercise 17: Basic concept of a scoring matrix, Similarity and distance	Numerical approach	12	PBL: Constructing and Interpreting Similarity and Distance Matrices	CO3
Phylogenetic analysis	Exercise 21: Phylogeny and concepts in molecular evolution; nature of data used in taxonomy and phylogeny Exercise 22: Definition and description of Phylogenetic trees Exercise 23: Various types of Phylogenetic trees Exercise 24: Phylogenetic tree construction through UPGMA Exercise 25: Phylogenetic tree construction through Fitch-Margoliash Algorithm	Practical examples, hands-on	12	PBL: Constructing Phylogenetic Trees Using UPGMA and Fitch-Margoliash Algorithms	CO4

		Exercise 26: case studies in phylogenetic sequence analysis				
	of Bioinformatics	properties based on sequence, Motif and pattern Exercise 28: Secondary structure (Statistical method: Chou Fasman and GOR method, Neural Network and Nearest neighbor method) and folding classes, specialized structure or features	exercises to		PBL: Use statistical methods and computational tools to predict secondary structures.	CO5
Total			1	60		

Textbook	extbooks			
Sr No	Book Details			
1.	Bioinformatics: Sequence and Genome Analysis by David W. Mount, 2ND EDITION			
2.	Bioinformatics for Dummies by Jean-Michel Claverie and Cedric Notredame, 2ND EDITION			
3.	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins			
Reference	e Books			
Sr No	Book Details			
1.	Bioinformatics for High Throughput Sequencing by Naiara Rodríguez-Ezpeleta, Michael Hackenberg, Ana M. Aransay			
2.	Bioinformatics and Functional Genomics, 3rd Edition by Jonathan Pevsner.			
3.	Bioinformatics: Principles and Applications by Bibekanand Mallick and Zhumur Ghosh			
Links (O	nly Verified links should be pasted here)			
http://app	s.iasri.res.in/ebook/win_school_aa/notes/Biological_Databases.pdf			
1 1	os://microbenotes.com/biological-databases-types-and-importance/			
1	tps://www.slideshare.net/sarfaraznasri/biological-databases-55931798			
	ps://www.slideshare.net/prasanthperceptron/biological-databases			
1 -	ides.library.queensu.ca/patents/databases			
https://wv	ww.slideshare.net/PallaviBelkar/patent-database-14579304			

(An Autonomous Institute) School of Biotechnology

Subject Name:	Biochemistry & Microbiology Lab	L-T-P [0-0-4]
Subject Code:	BBT0352	Applicable in Department: Biotechnology

Lab Experiments

Course Objective: The course aims to equip students with practical skills and theoretical knowledge in microbial techniques, biosafety practices, and the identification and analysis of microorganisms using various methods.

Course Outcomes (CO)

Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level (KL)
CO1	Demonstrate proficiency in microbial good laboratory practices and biosafety protocols.	K1
CO2	Identify microorganisms based on colony morphology and Gram staining techniques.	K6
CO3	Prepare, sterilize, and inoculate culture media, and enumerate microbes from environmental samples.	K6
CO4	Cultivate and isolate microorganisms using various microbiological techniques, and analyze microbial samples from soil and to analyze protein, amino acids and sugars in samples	

List of Practicals

Sr No	Program Little	CO Mapping
1.	Microbial good lab practices and biosafety. (CO1)	CO1
2.	Identification of microbial colony on the basis of microbial morphology. (CO2)	CO1
3.	Preparation of nutrient agar plate, slant nutrient broth and their sterilization. (Heating oven, autoclave, laminar air hood) (CO3)	CO2
4.	Inoculation of agar slant, plate and nutrient broth. (Incubator, laminar air hood) (CO3)	CO2

5.	Culture of microorganisms using various techniques. (Spread-plate method, pore-plate method, streaking method) (CO4)	CO2
6.	Enumeration of microbes from given soil sample. (CO3)	CO3
7.	Isolation and identification (on the basis of colony morphology) of microorganisms from soil sample. (CO4)	CO3
8.	To identify given microorganism on the basis of gram staining. (CO2)	CO3
9.	To study the anti-microbial efficacy of plant extract. (CO5)	CO3
10.	To study estimation of coliform bacteria in water by MPN test. (CO5)	CO3
11.	Identification of the microbes on the basis of biochemical tests.	CO4
12.	Analysis of starch in the given sample.	CO4
13.	Estimation of protein in the given sample.	CO4
14.	To separate amino acids using paper/thin layer chromatography	CO4

(An Autonomous Institute) School of Biotechnology

Subject Name:	Genetics & Molecular Biology Lab	L-T-P [0-0-2]
Subject Code: Bl	BT0353	Applicable in Department: Biotechnology

Lab Experiments

Course Objective: To provide students the knowledge and skill about analysing the genotypic and allelic frequencies, linkage, gene mapping, DNA and RNA extraction, techniques of DNA, RNA and Protein separations, regulation of gene expression and DNA microarray techniques.

Course Outcomes (CO)

Course	1	Bloom's Knowledge Level (KL)
CO 1	Students able to calculate genotypic and allelic frequencies and demonstrate the linkage, crossing over, and gene mapping in Drosophila melanogaster.	K1
CO2	Students able to perform of polytene chromosome from insect salivary gland and design their study with drosophila mutants	K6
CO3	Students will have enhanced their knowledge for doing extraction of genomic DNA and extraction of RNA from animal and plant tissues	K6
	Students evaluate and calculate molecular weight of proteins and concentrations of DNA.	
	Students will have enhanced their knowledge in gene expression, regulation of gene expression and gene expression using DNA microarray.	

List of Practicals

Sr No	Program Title	CO Mapping
11.	To understand and calculate the genotypic and allelic frequencies in a given population using the Hardy-Weinberg equilibrium principle.	CO1
2.	Study on linkage, crossing over, and gene mapping in <i>Drosophila melanogaster</i> .	CO1

3.	Study of polytene chromosome from insect salivary gland.	CO2
4.	Study and Observation of mutants in Drosophila.	CO2
5.	Extraction of genomic DNA from Drosophila/ animal cell.	CO3
6.	To understand the principles and applications of Polymerase Chain Reaction (PCR) amplification and gel electrophoresis in molecular biology.	CO3
7.	Estimation of size in bp of DNA using agarose gel electrophoresis.	CO4
8.	Polyacrylamide gel electrophoresis and estimation of MW of proteins.	CO4
9.	Demonstration of gene expression, regulation of gene expression by using a digital platform.	CO5
10.	Demonstration of gene expression using DNA microarray by using a digital platform	CO5

(An Autonomous Institute) School of Biotechnology

Rloom's

Subject Name Environmental Science	L-T-P [2-0-0]
Subject Code ANC 0302/0402	Applicable in Department: All Department

Pre-requisite of Subject: Environmental science is an interdisciplinary field that requires a solid foundation in various subjects to fully understand the complex interactions within the environment.

Building a strong foundation in subjects like physics, chemistry, biology,maths,geography,economics will equip students with the knowledge and skills necessary to tackle complex environmental challenges and contribute to sustainable solutions.

Course Objective: To help the students in realizing the inter-relationship between man and environment and help the students in acquiring basic knowledge about environment.

Course Outcomes (CO)

		Diodii s
Co	urse outcome: After completion of this course students will be able to:	Knowledge
		Level(KL)
CC	Understand the basic principles of ecology and environment. Ecosystem: Basic concepts, components of ecosystem, food chains and food webs. Ecological pyramids	K1
CC	2 Understand the different types of natural recourses like food, forest, Minerals and energy and their conservation	K1,K2
CC	3 Understand the importance of biodiversity, Threats of biodiversity and different methods of biodiversity conservation.	K1,K2
	4 Understand the different types of pollution, pollutants, their sources, effects and their control methods.	K1,K2
CC	Understand the basic concepts of sustainable development, Environmental Impact Assessment (EIA) and different acts related to environment	K1,K2

Syllabus

Unit No	Module Name	Topic covered		Required	Practical/ Assignment/ Lab Nos	CO Mapping
1	-	Definition, Scope and basic principles of ecology and environment. Ecosystem: Basic concepts, components of ecosystem. Food chains and food	Smart board,	4(L)	NA	CO1

		Characteristics of different ecosystems. Biogeochemical Cycles: Importance, gaseous and sedimentary cycles. Carbon, Nitrogen, Phosphorus and Sulphur	PPTS, Reference Books,			
2	Natural Resources and Associated Problems	Land resources: Land as a resource, land degradation, man induced landslides. Equitable use of resources for sustainable lifestyles. Non-Renewable Energy Resources: Fossil fuels and their reserves, Nuclear energy, types, uses and effects, Renewable Energy Resources: hydropower, Solar energy, geothermal, tidal and wind energy, Biomass energy, biogas and its advantages.	Smart board, PPTS, Reference Books,	4(L)	NA	CO2
3	Biodiversity Succession and Non-Renewable Energy Resources	Biodiversity and their importance, Threats to biodiversity, major causes, extinction's, vulnerability of species to extinction, IUCN threat categories, Red data book. Strategies for biodiversity conservation, principles of biodiversity conservation in-situ and ex-situ conservation strategies Mega diversity zones and Hot spots, concepts, distribution and importance. Succession: Concepts of succession, Types of Succession. Trends in succession. Climax and stability.	Smart board, PPTS, Reference Books	4(L)	NA	CO3
4	waste Management	Air pollution: sources of air pollution, Primary and secondary air pollutants. Origin and effects of SOX, NOX, Cox,CFC, Hydrocarbon, control of air pollution. Water pollution: sources and types of water pollution, Effects of water pollution, Eutrophication, Soil pollution: Causes of soil pollution, Effects of soil pollution, Major sources of and effects of noise pollution on health, Radioactive and thermal pollution sources and their effects on surrounding environment. Solid waste disposal and its effects on surrounding environment, Climate change, global warming, acid rain, ozone layer depletion.	Smart board, PPTS, Reference Books	4(L)	NA	CO4
5	Role of Community and Environmental Protection Acts	Role of community, women and NGOs in environmental protection, Bio indicators and their role, Natural hazards, Chemical accidents and disasters risk management, Environmental Impact Assessment (EIA), Salient features	Smart board, PPTS,	4(L)	NA	CO5

	of following Acts: a. Environmental Protection Act, 1986, Wildlife (Protection) Act, 1972.b. Water (Prevention and control of pollution) Act, 1974.c. Air (Prevention and control of pollution) Act, 1981. Forest (Conservation) Act, 1980.d. Wetlands (Conservation and Management) Rules, 2017; e. Chemical safety and Disaster Management law.F. District Environmental Action Plan. Climate action plans.	Reference Books		
Total			20	

Textbool	ζS .
Sr No	Book Details
1.	Brady, N.C. 1990. The nature and properties of Soils, Tenth Edition. Mac Millan Publishing Co., New York.
2	Botkin, D.B and Kodler E.A., 2000, Environmental Studies: The earth as a living planet. John Wiley and Sons Inc. Environmental studies and Environmental engineering –By Dr. H.H
3	Environmental Studies By Dr B.S.Chauhan
Reference	ee Books
Sr No	Book Details
1	Rao M.N. and H.V.N. Rao, 1989 : Air Pollution, Tata McGraw Hill Publishing Co. Ltd., New Delhi
2	A Text Book of environmental Science By Shashi Chawla
3	Environmental studies- R, Rajagopalan -Oxford Pubtiotion20051
Links (O	only Verified links should be pasted here)
• <u>E</u> : • 'B	Cosystems and Biomes Classroom Learning Video - YouTube Invironmental Science EVS Unit 3 Natural Resources Land Resources AEC semester 1/2 DU SOL NCWEB P -1 (youtube.com) Isodiversity & its Conservation' In Just 24 Minutes () () Ultimate Revision Series Neet 2022 (youtube.com) Irror Pollution What Causes Air Pollution? The Dr Binocs Show Kids Learning Videos Peekaboo Kidz (youtube.com)

Environmental Pollution - Environment and Ecology for UPSC IAS Part 2 (youtube.com)

(An Autonomous Institute) School of Biotechnology

Branch- B.TECH. (CSE/IT/CSE(R)/AI/AIML/DS/CYS/IOT/CS/EC/ME/BT)/M. Tech (Int.)				
Subject Code- BNC0301/BNC0401	L - T - P 2 - 0 - 0			
Subject Name- Artificial Intelligence and Cyber Ethics	No. of hours- 30			

Pre-requisite of Subject: Basic understanding of computer systems and ethics.

Course Objective- The course aims to foster critical thinking about ethical issues, promote responsible use of technology, and ensure students can identify, analyze, and address ethical dilemmas in AI and cyber domains.

Course Outcome – After completion of this course students are able to:

- **CO1** Learn key principles of AI ethics, summarizing ethical considerations and applications in AI development and deployment.
- CO2- Apply policies and framework for Fairness in AI and Machine Learning.
- CO3- Apply privacy and security concepts, risk management and regulatory compliance in the field of AI and Cyber Security.
- **CO4-** Understand the nature of cybercrimes, the principles of intellectual property rights (IPR), and the legal measures necessary to address and prevent these issues.

CO5- Describe the impact of AI in Society, employment and workforce.

Course Content

Unit No	Module	Topics Covered	Pedagogy	Lecture Required (T=L+P)	Aligned Practical/Assi gnment/Lab	CO Mapping
1	An overview to AI Ethics	Definition of AI. Ethical principles in AI. Sources of AI data. Legal implications of AI security breaches, Privacy and AI regulations. Key Principles of responsible AI, transparency and accountability, Dual-use dilemma, Human-centric design. Introduction to Cyber Laws and Ethics, Historical development of cyber laws, Legal frameworks.	Lecture and Case studies	5	Assignment	CO1

2	Fairness and Favoritism in Machine Learning	Introduction to Fairness and Bias in AI, Types of Fairness and Bias. Impact of Bias and Fairness in AI, techniques for measuring Fairness and Bias. Techniques for mitigating bias. Current policies and frameworks for fairness in AI. Bias in data collection, Fairness in data processing. Generative AI, Types of Bias in Generative AI.	Lecture and Case studies	6	Assignment	CO2
3	AI Ethics and Cybersecurity Principles	Importance of privacy and security in AI, AI specific security tools and software, privacy-preserving machine learning (PPML) and privacy-preserving data mining (PPDM) Ethical considerations in phases of AI development life cycle, Risk management: Risk assessment and incident response Regulatory compliance: GDPR, HIPAA Case studies: Implementation of AI ethics guidelines and best practices in engineering projects, Ethical decision-making processes and tools for engineers working with AI technologies	Lecture and Case studies	8	Assignment	CO3
4	Cybercrimes, IPR and Legal Measures	Types of cybercrimes and their impact, Legal measures for cybercrime prevention and prosecution. IPR: Copyrights, trademarks, patents, and trade secrets, Ethical implications of intellectual property, Cyber security and privacy issues	Lecture and Case studies	5	Assignment	CO4
5	AI Contribution to Social Evolution	Positive and negative political impacts of AI, Role of AI in social media and communication platforms, AI-generated content and deepfakes, Applications of AI in addressing global challenges, Key technical stakeholders in AI deployment: developers, researchers, policymakers, Technical Impacts on Employment and Workforce: Automation technologies: robotic process automation (RPA), autonomous systems	Lecture and Case studies	6	Assignment	CO5

References-

Text Books:

- 1. Introduction to Information Security and Cyber Laws, Simplified Chinese Edition by Surya Prakash Tripathi, Ritendra Goel, 1 January ,2014
- 2. AI ETHICS: Paving the Path for Responsible Machine Learning, Shivanand Kumar, 2014

Reference Books:

- 1. AI ETHICS (The MIT Press Essential Knowledge series), by Mark Coeckelbergh, 2018
- 2. Computers, Internet and New Technology Laws by Karnika Seth by Karnika

Links:
Unit 1 https://www.youtube.com/watch?v=VqFqWIqOB1g
Unit 2: https://www.youtube.com/watch?v=hVJqHgqF59A
Unit 3: https://www.youtube.com/watch?v=O5RX_T4Tg24
Unit 4: https://www.youtube.com/watch?v=RJZ0pxcZsSQ
Unit 5: https://www.youtube.com/watch?v=I9FOswjTSGg

Subject N	lame: Ferment	tion Engineering		L-T-P [3-1-0]		
Subject C	Code: BBT0403 Applicable in Department: Biotechnology					
Pre-requi	Pre-requisite of Subject: The students should know the basics of microbiology, genetics and molecular biology and biochemistry.					
growth kir	netics. They will	•	lifferent types of fermenters, ferr	ples of fermentation, including mentation media, and process par	2 0	
Course O	utcomes (CO)					
Course outcome: After completion of this course students will be able to:					Bloom's Knowledge Level (KL)	
CO 1	Understand sterilization techniques and determine sterilization time.					K1
CO2	Differentiate among Batch culture, Fed-Batch and continuous fermentation processes.					K2
CO3	Understand and demonstrate different regulatory mechanisms during product formation.					K2
CO4	Illustrate the production process of fermented food and dairy products.					K3
CO5	Explain the fermentation techniques for production of alcohols, antibiotics, and organic acids.					K2
Syllabus						
Unit No	Module Name	Topic covered	Pedagogy	Required	Practical/ Assignment/ Lab Nos	CO Mapping

1	Introduction to fermentation technology	Significance of fermentation, Introduction to submerged and solid-state fermentation, Microbial culture selection for fermentation processes. Primary and Secondary metabolites, sterilization process, media for industrial fermentation	Smartboard/PPT/Textbook/ Reference Book/ Virtual demonstration	8	PBL: Understand the composition and function of fermentation media (nutrient sources, pH buffers, supplements).	CO 1
2	Type of fermentation processes	Batch, Fed-batch and Continuous fermentation processes, Construction of fermenters, Basic function of fermenters, Design, and operation, Scale up of fermentation, Instrumentation and control, Aeration and agitation, Introduction to bioreactors.	Smartboard/PPT/Textbook/ Reference Book/ Virtual demonstration	8	PBL: Understand the controlling and functioning of fermenter.	CO 2
3	Mechanisms behind metabolic reaction	Different regulatory mechanisms involved in controlling the catabolic and anabolic processes of microbes, Induction, Nutritional repression, Carbon catabolite repression, Crabtree effect, Feedback inhibition and feedback repression	Smartboard/PPT/Textbook/ Reference Book/ Virtual demonstration	8	ABL: Production of Ethanol by fermentation using Saccharomyces cerevisiae	CO 3
4	Fermentation and food	Raw material availability, quality, processes and pretreatment of raw materials. Alcoholic beverages and IMFL/distilled spirits. Mushroom cultivation, Oriented Fermented	Smartboard/PPT/Textbook/ Reference Book/ Virtual demonstration	8	ABL: Production of fermented food products (Idli)	CO 4
5	Industrial production of fermented products	Details of the process, parameters and materials for industrial manufacture of antibiotics (β lactum), Solvents (acetone, ethanol) Amino acid (Lysine),	Smartboard/PPT/Textbook/ Reference Book/ Virtual demonstration	8	ABL: Citric acid production from whey with glucose as supplementary carbon	CO 5

Organic acids (Citric acid), Ind.		source by Aspergillus	
Enzymes (Protease/Amylase),		niger	
Fermentation for APIs (Active			
Pharmaceutical Ingredients),			
Biopharmaceuticals			
(Insulin/Interferon etc.)			
Total	32		

Textbooks			
Sr No	Book Details		
1.	Microbes & Fermentation, A. Lel and Kotlers Richard J. Mickey, Oriffin Publication		
	Microbes & Fermentation, A. Lel and Kotlers Richard J. Mickey, Oriffin Publication		
	Industrial Fermentations- Leland, N. Y. Chemical Publishers		
Referen	ce Books		
Sr No	Book Details		
	P. F. Stanbury and A. Whittaker, 'Principles of fermentation technology		
	F. Kargi and Michael L. Shuker, 'Bioprocess Engineering: Basic Concepts		
	K M Richard and S R Durbia, 'fermentation and biochemical engineering' VOL 2		
Links (Only Verified links should be pasted here)			
Unit-1	outu be/eI VsGuw5Ofk		

https://youtu.be/eLYsGuw5Ofk

https://youtu.be/K2HfqV3sAx0

https://youtu.be/ZgM3h0xTUfM

https://youtu.be/LwIe275w1Jc

https://youtu.be/0XUVqZcz2N8

https://youtu.be/SqXjhI9lsUg

Unit-2

https://youtu.be/EILSfuqqUJc

https://youtu.be/lMSE7XYcCrM

https://youtu.be/fWBENdo1R1U

https://youtu.be/LwIe275w1Jc https://youtu.be/JPcap80yvxE https://youtu.be/1ZBRCFZJR2Q https://youtu.be/sMBBzLrZgRw

Unit-3

https://youtu.be/cOesDqGqM0Y https://youtu.be/IWgNA9ynfGs https://youtu.be/InFB28KII0c https://youtu.be/Fq3B4mU7_YA

Unit-4

https://youtu.be/XvWlZttdbHk https://youtu.be/_g-aUX1Jg9g https://youtu.be/TVkL9gZpQ0o

Unit-5

https://youtu.be/IU-15iYOOxE https://youtu.be/5zJZ-JFAdS0 https://youtu.be/Y7_KdQF9saM https://youtu.be/LiO7xX6CAx8 https://youtu.be/-NZ3MSJbdi8 https://youtu.be/QBnaYrXOR1w https://youtu.be/4Zf3bUVKd-k

(An Autonomous Institute)
Department of Biotechnology

Subject 1	Name: Technical Co	mmunication	L-T-I	P [2-1-0]			
	Code: BASL0401 ble in Department: (CSE, CSE (R), IT, DS, IoT, AI, AIML, CS, BT, E	C, CYS, & ME			S	Sem. IV
Pre-requ	usite of Subject: B2	(CEFR level) in the Core Skills test; B1/B2 in the	Speaking and Wr	iting tests			
		o communication and critical thinking skills neces ommunicate effectively, creatively, accurately, an		ng in the divers	e and ever-c	hanging workpla	ce of the twenty first
Course (Outcomes (CO)						
Course o	Course outcome: After completion of this course students will be able to:						Bloom's Knowledge Level(KL)
CO 1	Comprehend the princ	ciples and functions of technical communication.					K2
CO2	Write for a specific a	udience and purpose to fulfil the provided brief.					K5
CO3	Identify and produce	different kinds of technical documents.					K2, K3
CO4	Apply effective speak	ring skills to efficiently carry out official discourse	es.				K3
CO5	Demonstrate understa	anding of communication through digital media.					K5
Syllabus							
Unit No	Module Name	Topic covered		Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	Introduction to Technical Communication	• Definition, Process, Types, Levels, Flow Technical Communication with emphasis on cult and gender sensitivity. Gender-neutral language.		Interactive & Flipped classroom method	5	Assignment 1	CO1

		 Need for and Importance of Technical Communication - Significance of audience in technical communication Tone- Formality and Informality 				
2	Technical Writing 1	 Technical writing and technical vocabulary Business letters/emails Types and format, Content Organization Cultural Variety, Tone, and Intention Bad news message, good news message Advertisements, Editorial press releases Notices, agenda, and minutes of meeting Job application, CV, and Resume' 	Interactive & Flipped classroom method	10	Assignment 2	CO2
3	Technical Writing 2	 Technical reports – types & formats Structure of a report (short & long) Ethical Writing – Copy Editing, Referencing and Plagiarism Technical Proposal - structure and types Technical/ Scientific paper writing 	PPT, Activities	5	Assignment 3	CO3
4	Public Speaking	 Components of effective speaking Seminar and conference presentation Conducting/ participating in meetings Appearing for a job interview 	Interactive sessions, activities, mock interviews	8	Assignment 4	CO4
5	Virtual/Remote Communication	 Understanding remote work – using different online platforms Virtual etiquette- email ids, usernames Developing online written correspondence- blogs, WhatsApp, LinkedIn. What not to write on social media. Participating in online Conferences/seminars/meetings Mobile Etiquette 	Interactive sessions, activities	8	Assignment 5	CO5
Total	Total			36		

(An Autonomous Institute) School of Biotechnology

Subje	ct Name: Green Biotechnolo	gy and Pollution Abetment		L-T-P [3	-0-0]	
Subje	ct Code: BBT0404		Applic	able in Dep	oartment: Biotechnol	ogy
Pre-re	equisite of Subject: Basic know	wledge of environmental science and biology.				
of xen	obiotic compounds, usage of en	nt is designed to help students grasp the role of biotechnology in zyme and its importance in waste treatment, various biological p	rocesses for re	emediation		-
	cements aim to reduce the harm te Outcomes (CO)	ful effects of pollutants, ultimately fostering a healthier environm	ent for our pl	lanet.		
Cours	se outcome: After completion o	f this course students will be able to:				Bloom's Knowledge Level(KL)
CO 1	Learn and explain the different	aspects of various waste treatment processes.				K1
CO2	Describe and explain the biote	chnological processes to handle xenobiotic compounds.				K1, K2
CO3	Understands and explains the j	process of bio transformation, importance of enzymes and their u	tilization in w	aste treatm	ent.	K1, K2
CO4	Understand and analyze the bi	oremediation processes, in situ and ex situ bioremediation, phytor	emediation to	protect the	environment.	K1, K4
CO5	Understand and describes the J	potential biomass sources for renewable energy generation and ec	o-friendly pro	oducts from	renewable resources.	K1
Syllab	ous					
Unit No	Module Name	Topic covered		Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	Biological Waste Treatment	Biological Waste Treatment: Biological wastewater treatment: Principles and design aspects of various waste treatment methods with advanced bioreactor configuration: Solid waste management: landfills, recycling and processing of organic	PPI, Smart board, short films, videos,	8	ABL- understand the concepts and processes involved in	

	residues, Basic concepts on water quality analytic parameters (Physical, temperature, color, chemical: pH, DO, BOD, COD, TS, TDS, TSS).	Hands out, hands-on models, Reference books and textbooks	biological waste treatment.	
Biodegradation of Xenobiotic Compounds	sources. Introduction to Microbial Diversity and Xenobiotic Biodegradation, Effect of chemical structure on biodegradation, recalcitrance, co metabolism and biotransformation. Factors affecting biodegradation, microbial degradation of hydrocarbons,	PPI, Smart 8 board, short films, video hands out, hands-on models. Reference books and textbooks	ABL- Understand the CO2 concept of biodegradation of xenobiotic compounds through interactive and hands-on activities	2
Biotransformation'and Biocatalysts	Green Chemistry Applications: Role of biocatalysis in sustainable chemical synthesis. Enzymatic reactions for green	PPI, Smart 8 board, short films, videos, Reference books and textbooks,	ABL- Exploring Enzyme Activity 2.Microbial biotransformation	3
Bioremediation & Biorestoration	of coal mines a case study. bio restoration: reforestation through micropropagation, use of mycorrhizae in reforestation, use of microbes for improving soil fertility, reforestation of soils	PPI, Smart 8 board, short films, videos, Reference books and textbooks	ABL- Understand how bioremediation can be used to clean up oil spills 2.Learn how microorganisms and plants can remove heavy metals from contaminated soil.	4
Eco-Friendly Bioproducts From Renewable Sources	sources, Fundamentals of composting process, scientific aspects and prospects of biofuel production-bioethanol, biohydrogen	PPI, Smart 8 board, short films, videos	ABL- Investigate the CO5 creation and benefits of biodegradable packaging materials.	5

	Status of biotechnology in environment protection and its future.	Reference books and textbooks		2. Understand how natural ingredients can be used to create effective and ecofriendly cleaning products.	
Total			40		

Textbo	Textbooks					
Sr No	Book Details					
1.	Textbook of Environmental Biotechnology (Woodhead Publishing India in Energy) by Pramod Kumar, Vipin Kumar WPI					
	Environmental Microbiology by Dr P D Sharma Rastogi Publication.					
	Textbook of Environmental Biotechnology by Pradipta Kumar Mohapatra					
Referen	ice Books					
Sr No	Book Details					
	Environmental Biotechnology" by Bhattacharya B C and Banerjee R					
	Environmental Biotechnology: Basic Concepts and Applications" by Indu Shekhar Thakur					
	Environmental Biotechnology by Rajmohan Joshi Rekhta Books					
Links (Only Verified links should be pasted here)					
•	Unit 1 https://www.youtube.com/watch?v=Jj16iZ6unBQ					
	Unit 2 https://www.youtube.com/watch?v=6RHXbQBkXrY					
•	Unit 3 https://www.youtube.com/watch?v=QNOivQcSjWc					
•	Unit 4 https://www.youtube.com/watch?v=oRBeBZcUies					
•	Unit 5 https://www.youtube.com/watch?v=xAms3Q_3pXg					

(An Autonomous Institute) School of Biotechnology

Subjec	t Name: Immunology and Immunotechnology L-T-P [3-0-0]						
Subjec	Subject Code: BBT0402 Applicable in Department: Biotechnology						
Pre-red	quisite of Subject: Students should know the basics of cell biology and human physiology						
regulati finding	Objective : The course will foster an understanding of immunological principles, including antigen-antibody interactions, immune cell act on, and the development of immunological memory. Students will learn to critically analyze scientific literature, design experiments, and in s. They will also explore the application of immunological methods in areas such as immunotherapy, including the use of monoclonal antibodint inhibitors, vaccines, and adoptive cell therapies for treating various diseases.	terpret research					
Course	Outcomes (CO)						
Course	1	Bloom's Knowledge Level(KL)					
CO 1	Identify and explain in detail the basic components and functionalities of the immune system.	K1					
CO2	Identify and explain antigen and antibody structure and function, thus will be able to understand the associated scientific and industrial research and technologies.	K1,K2					
CO3	Understand the technical aspect of immunological reactions and their application in scientific research.	K2,K3					
CO4	Describe various ways of regulation of immune response; and thus, will be able to critically evaluate the regulatory mechanisms and their importance in human health.	K2,K4					
CO5	Associate the immunological mechanisms with various kinds of human diseases and health conditions.	K2					
Syllabu	us	L					

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	OVERVIEW OF THE IMMUNE SYSTEM	Introduction to immunity and immune system, Cells and Molecules of the immune system, Haematopoiesis, Characteristics and players of innate and adaptive immunity, Humoral and Cell mediated immune response, Primary and Secondary lymphoid organs, Structure, function and application of cytokines, Inflammation-features and Inflammatory response, Pro-inflammatory and anti-inflammatory cytokines, T &B cell maturation, activation and differentiation.	Visual Aids, Interactive Activities, Multimedia Resources	8	PBL: Count the blood cells using hemocytometer	CO1
2	ANTIGEN AND ANTIBODY STRUCTURE	Antigens: Characteristics and types of Antigens, Factors affecting the immunogenicity, Haptens and adjuvants, Epitopes, Characteristics of T&B cell epitopes. Antibodies: Structure, functions and characteristics of different classes of antibodies, Antigenic Determinants on Immunoglobulins, Generation of antibody diversity, Somatic hyper-mutation, Monoclonal and polyclonal antibodies and their commercial preparation	Visual Aids, Interactive Activities, Multimedia Resources	8	ABL: Understanding the structure and function of antibodies by preparing model.	CO2
3	IMMUNO- TECHNIQUES AND IMMUNIZATION	Antigen and antibody interactions cross reactivity, precipitation reactions, and Immunological techniques: serological techniques,	Visual Aids, Interactive Activities, Multimedia Resources	8	PBL: Separate and identify proteins based on their electrophoretic mobility and antigen-antibody interactions.	CO3
4	MHC AND REGULATION OF IMMUNE RESPONSE	Structure and Function of MHC molecules, Antigen presenting cells, Exogenous and Endogenous pathways of antigen processing and presentation, Germinal centre, Plasma Cells, BCR signalling, Complement system and pathways, immune tolerance negative/positive selection, TCR rearrangement, co-stimulatory molecules. T cell subtypes: Th1, Th2, Th17, Tregs etc. Memory B and T cell responses, Immune checkpoints: PD1, CTLA4, TIM3 etc. CD4 and CD8 receptors.	Visual Aids, Interactive Activities, Multimedia Resources	8	ABL: To understand how the immune system responds to external threats.	CO4
5	IMMUNITY AND DISEASES	Immunity without infection: autoimmunity, hypersensitivity, Transplantation immunology host vs graft reaction Design of recombinant antibodies, Immuno-therapy in cancer, checkpoint	Visual Aids, Interactive Activities, Multimedia Resources	8	ABL: Role-playing exercise as immune cells and cancer cells, demonstrating how checkpoint	CO5

			inhibitors work.	
Total		40		

	·				
Textbool	Textbooks				
Sr No	Book Details				
1.	Immunology and Immunotechnology by Ashim K. Chakravarty, Oxford University Press				
Reference	e Books				
Sr No	Book Details				
1.	Kuby Immunology by Thomas J. Kindt, Barbara A. Osborne, Richard Goldsby. 8 th edition				
2.	Introduction to Medical Immunology by Gabriel Virella. 7 th edition				
Links (O	nly Verified links should be pasted here)				
https://yo https://yo https://yo	https://youtu.be/IXfEK8G8CUI?si=31lzqyT4DZQlk0QI https://youtu.be/BSypUV6QUNw?si=uEY07sJyezf19TRy https://youtu.be/LmpuerlbJu0?si=TWVNfGAnMNsTbU4w https://youtu.be/UZTf3OXJDWA?si=PJpxMyHieof48RIE https://youtu.be/2308rRHgluA?si=by_Yb1Qgpy5cMWfH				

(An Autonomous Institute) School of Biotechnology

Plaam's

Subject Name:	Analytical Techniques	L-T-P [2-0-0]
---------------	-----------------------	---------------

Subject Code: BBT0401 Applicable in Department: Biotechnology

Pre-requisite of Subject: Students should know about the different analytical techniques.

Course Objective: The primary objectives of this course are to develop the skills to understand the theory and practice of bio analytical techniques and to provide scientific understanding of analytical techniques and detail interpretation of results that will help them to demonstrate a broad understanding of life science technologies.

Course Outcomes (CO)

Course	Course outcome: After completion of this course students will be able to:				
CO 1	Describe the principles and various components of different microscope to analyse and characterize biomolecules.	K1			
CO2	Describe the general principle of chromatographic separations and apply these techniques to the separation of a hypothetical protein sample.	K1, K3			
CO3	Understand the regions of electromagnetic spectrum and relate them to spectroscopic methods	K2			
CO4	Outline and understand the concept of gel electrophoresis.	K2			
CO5	Apply centrifugation techniques for the separation of biological samples.	К3			

Syllabus

l	U nit No	Module Name	Topic covered		Required	Practical/ Assignment/ Lab Nos	CO Mapping
]		its types	Light microscopy, Bright & Dark Field microscopy, Fluorescence microscopy, Phase Contrast microscopy, Electron microscopy: TEM and SEM. Atomic force microscopy	Motivation and Direction of activity	6	ABL: Comparative microscopy observation.	CO1

			Practical based learning Motivation and			
2	Chromatography	Principle and Operations of Chromatography, Thin layer chromatography, Ion Exchange Chromatography, High Performance Liquid Chromatography (HPLC), Gas Liquid Chromatography (GLC), Affinity Chromatography	Direction of activity Practical based learning	7	ABL: Affinity chromatography role-play.	CO2
3			Motivation and Direction of activity Practical based learning	8	ABL: Instrument Familiarization Acitivity	CO3
4	Electrophoresis	Theory of Electrophoresis, Factors affecting the migration of substances Gel electrophoresis, PAGE, SDS-PAGE, Agarose Electrophoresis of Nucleic Acid, Isoelectric Focusing of Protein Pulse Gel Electrophoresis and Western Blotting.	Motivation and Direction of activity Practical based learning	6	ABL: Electrophoresis Simulation.	CO4
5	Centrifugation	Theory of centrifugation and sedimentation. Types of centrifuges, Preparative and analytical centrifugation; Density gradient centrifugation. Application of centrifugation for preparative and analytical purpose. Biosensors: Principles and definition, characteristics of Ideal biosensors, Biochemical components of biosensors: Enzyme based biocatalyst sensors, Bioaffinity systems, Immunosensors.	Motivation and Direction of activity Practical based learning	8	ABL: Centrifuge Simulation.	CO5
Total				35		

Textboo	oks
Sr No	Book Details
1.	Wilson and Walker, "Principles and Techniques of Practical Biochemistry" 5th Edn., Cambridge Knew pros 1997.

	Biotechniques: Theory & Practice: Second Edition by SVS Rana, Rustogi Publications.						
	Biochemical Methods of Analysis: Saroj Dua And Neera Garg: Narosa Publishing House, New Delhi. 4. Bioanalytical Techniques: ML Srivastava; Narosa Publishing House, New Delhi.						
Refere	nce Books						
Sr No	Sr No Book Details						
Links	Only Verified links should be pasted here)						
1-	https://www.youtube.com/watch?v=n18jMutR_z0						
2-	https://www.youtube.com/watch?v=PMq02umihQk						
3-	https://www.youtube.com/watch?v=2Y8pSoS0d1g						
4-	https://www.youtube.com/watch?v=BM9qQ_sHWP8						
5-	https://www.youtube.com/watch?v=jn8iT31w9s4						

(An Autonomous Institute) School of Biotechnology

available

Subject 1	Name: Structu	ral Bioinformatics	L-T	Г-Р [0-0-6]				
Subject	Code: BBT0455	,	Applicable in Depart	ment: Biotec	chnology			
Pre-requ	uisite of Subject	: Bioinformatics						
			owledge by demonstrating a wing, synthesizing and critically					o critically
Course (Outcomes (CO)							
Course o	outcome: After o	completion of this course stude	ents will be able to:					Bloom's Knowledge Level(KL)
Inderstand the various tools and techniques related to in-silico modeling of hiomolecules. Analyze problems related to collection and				K1, K2, K3				
CO2	Speculate RNA	Structure by different methods	s and its limitations					K1, K2
CO3	Understand diff	erent Machine algorithms and	capable to evaluate and valida	nte by statistic	al significance)		K1, K2, K3
CO4	Understand the	application of molecular dynar	mics, molecular mechanism ar	nd its applicat	ion in protein	folding		K1, K2
CO5	Apply the know	ledge of molecular modeling i	in drug designing and develop	ment				K1, K2, K3
Syllabus								
Unit No	Module Name	Topic covered			Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	Alignment	Exercise 1: Homology identifi Exercise 2: Genomic sequence identification)	ication e annotation (Genes and ORFs	}	Encourage students to explore freely	12	PBL: Biological Network Identification	CO1

Exercise 3: Protein structure prediction (Secondary

		Exercise 4: Protein structure prediction (Tertiary structure prediction) Exercise 5: Protein function prediction. Exercise 6:Biological network identification Exercise 7: Next generation sequencing Exercise 8: Microarray data analysis	bioinformatics databases, tools, and resources to gain practical experience.	Tools: Cytoscape, Gephi Exercises: Create and visualize protein-protein interaction networks using Cytoscape. Analyze and interpret biological networks using network statistics and clustering. Import and analyze gene co-expression networks using Gephi.
2	and Function	Exercise 9 Basics of RNA Structure prediction and its limitations. Exercise 10: Database Searching: Introduction, Evolutionary Basis of Sequence Alignment Exercise 11: Features of RNA Secondary Structure Exercise 12: RNA structure prediction methods: Based on self-complementary regions in RNA sequence Exercise 13: RNA structure prediction methods: Minimum free energy methods Exercise 14: Suboptimal structure prediction by MFOLD Exercise 15: Prediction based on finding most probable structure and Sequence co-variance method Exercise 16: Application of RNA structure modeling	Practical 12 examples, and hands-on exercises to engage learners and reinforce their understanding.	PBL: Use the RNAfold web server to predict the secondary structure of a given RNA sequence.
3		Exercise 17: Introduction to biostatistics and its role in biomedical research Exercise 18: Data collection methods and sampling techniques search Exercise 19: Measures of central tendency (mean, median, mode) Exercise 20: parametric tests and non-parametric tests. non-parametric	Numerical 12 approach	CO3

		tests. Correlation and Regression Analysis.				
4	Molecular Modelling:	Exercise 21: Molecular Modeling by Homology Exercise 22: construction of frame work, selecting variable regions, Exercise 23: Back bone and side chain placement and refinement Exercise 24: Optimization and validation of protein models. Exercise 25: Threading and Ab-initio modeling Exercise 26: Ramchandran plot.	Practical examples, hands-on		PBL: Validate Protein 3D Structure using Ramchandran plot	CO4
	_	Exercise 27: Major steps in Drug Designing, Ligand and Structure based drug designing Exercise 28: Protein-ligand docking Exercise 29: QSAR Modeling Exercise 30: P Pharmacodynamics (Efficacy & Potency)	Hands-on exercises to engage learners and reinforce their understanding		PBL: Perform a protein-ligand docking simulation using MVD	CO5
Total	l		1	60		

Textboo	ks					
Sr No	Book Details					
1.	Bioinformatics Data Skills by Vince Buffalo					
	An Introduction to Bioinformatics Algorithms by Neil C. Jones and Pavel A. Pevzner					
	Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids" by Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison.					
Referen	ce Books					
Sr No	Book Details					
Links (C	nks (Only Verified links should be pasted here)					

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute) School of Biotechnology

Subject Name:	Immunology and Immuno-technology L	ab	L-T-P [0-0-4]
Subject Code:	BBT0452	Applicable in Department:	Biotechnology

Lab Experiments

Course Objective: The course aims to equip students with practical skills and theoretical understanding in immunology and immunotechnology, fostering proficiency in experimental techniques and clinical applications.

Course Outcomes (CO)

Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level (KL)
CO 1	Gain a comprehensive understanding of fundamental concepts in immunology, including the immune system's components, mechanisms, and functions.	K1
CO2	Analyze, and interpret experimental data obtained from immunological experiments, including quantitative analysis of antigenantibody interactions	K6
CO3	Develop practical skills in performing a variety of immunological assays and experiments.	K6
CO4	Apply immunological methods and techniques to investigate questions related to immune function, disease pathology, and therapeutic interventions.	
CO5	Identify blood cells and immune cells using staining technique and isolate, as well as visualize immunological cells microscopically.	

List of Practicals

Sr No		CO Mapping
1.	To identify the blood cells/ immune cell with the help of leishman stain.	1

2.	To determine the blood group and Rh factor of given blood	2
3.	To perform single radial immunodiffusion	3
4.	To perform double immunodiffusion	
5.	To perform counter current immune electrophoresis	3
6.	To perform Sand-witch ELISA	3
7.	To determination of binding affinity of antigen-antibody complex.	2
8.	To Isolate and perform microscopic visualization of T-cells and B-cells	1
9.	To perform western blotting.	3,4
10.	Histological examination of immune organs.	3,5

(An Autonomous Institute) School of Biotechnology

Subject Name: An	nalytical Techniques Lab	L-T-P [0-0-4]
Subject Code: BB	T0451	Applicable in Department: Biotechnology

Lab Experiments

Course Objective: The course aims to equip students with practical skills and theoretical understanding in immunology and immunotechnology, fostering proficiency in experimental techniques and clinical applications.

Course Outcomes (CO)

Course	Course outcome: After completion of this course students will be able to:	
CO 1	Prepare students to gain practical knowledge about the instruments for analytical techniques used in laboratory.	K1
CO2	Develop among students hand-on experience of separation of biomolecules on electrophoresis unit.	K6
CO3	Provide students with handing of UV spectrophotometer and its understanding.	K 6
CO4	To make students understand the application of analytical techniques in research laboratories.	
CO5	Instill the understanding of chromatography among students.	

List of Practicals

Sr No	Program Title	CO Mapping
1.	Demonstration of basic concept of precision and accuracy using appropriate experimental data.	CO1
2.	To study principle and working of laboratory microscope.	CO1
3.	To analyse the isolated plant pigments using paper chromatography.	CO2
4.	Separation of amino acids using thin layer chromatography.	CO2

5.	Separation of a mixture of polar and non-polar compounds using column chromatographic technique.	CO2
6.	Study of Beer-Lambert's law-using UV-Visible spectrophotometer.	CO3
7.	To study and analysis of DNA sample by agarose gel electrophoresis.	CO4
8.	To study and analysis of protein sample by SDS- PAGE.	CO4
9.	To study the separation of compounds using liquid-liquid extraction experiments.	CO5
10.	To study the separation of biological compounds using various membrane separation.	CO5

(An Autonomous Institute) School of Biotechnology

Technical Communication Lab

L-T-P [0-0-2]

Subject Code: BASL0451

List of Practicals

Lab No.	Unit	Topic	Program Logic Building	CO Mapping	Aligned with university/industry/c ertifications	
1	1	Case Study Analysis	The students will be able to develop their critical thinking and analytical skills.	CO1	AKTU/Industry	
2	2	Email Role Reversal: Writing and responding to emails in peer groups	The students will practice writing and responding to professional emails.	CO2	AKTU/Industry	
3	2	Infographics – Data Analysis and Interpretation Task	The students will develop their ability to decipher important information from charts, graphs, tables, and diagrams.	CO3	AKTU/Industry	
4	3	Document Redesign Challenge: Redesigning existing technical documents to improve readability	The students will develop their ability to write and edit professional documents. CO3 AKTU/Industr			
5	3	Abstract Formulation and Referencing	The students will be able to write research papers with proper source citations.	CO3	AKTU/Industry	
6	4	Case Study presentations	The students will improve their analytical skills and by presenting improve their speaking skills.	CO4	AKTU/Industry	
7	4	Presentation on Project Report	The students will develop professional speaking skills.	CO4	AKTU/Industry	
8	4	Ted talk simulation – summarising a Ted Talk	The students improve their ability to condense speeches. CO4 AKTU		AKTU/Industry	
9 & 10	4	Mock Interviews	The students will practice and enhance their interview skills.	CO4	AKTU/Industry	
11 & 12	5	Webinar Presentations/Online Interviews	The students will improve their ability to make presentations in professional scenarios and perform well in online interviews.	CO5	Industry	

	Textbooks
Sr No	Book Details
1.	Technical Communication – Principles and Practices by Meenakshi Raman & Sangeeta Sharma, 4th Edition, Oxford University Press, 2023, New Delhi.
Reference	Books
Sr No	Book Details
1	Technical Communication: A Practical Guide by William S. Pfeiffer and Kaye A. Adkins, Pearson, 2020, UK.
2	The Essentials of Technical Communication by Elizabeth Tebeaux and Sam Dragga, Oxford University Press, 2021, UK.
3	Technical Communication Today by Richard Johnson-Sheehan, Pearson, 2020, UK
4	Strategic Communication in Technical Professions" by Susan K. Miller-Cochran and Jason Tham, Routledge, 2020, UK.
5	Technical Writing for Engineers & Scientists by Michelle V. Z. Holmes, McGraw Hill, 2020, US.
6	Speaking: Second Language Acquisition, from Theory to Practice by William Littlewood, Cambridge University Press, 2022, UK.
7	The Writing Revolution: A Guide to Advancing Thinking Through Writing in All Subjects and Grades by Judith C. Hochman and Natalie Wexler, Jossey-Bass, 2022, USA.

(An Autonomous Institute) School of Biotechnology

Branch- B.TECH. (CSE/IT/CSE(R)/AI/AIML/DS/CYS/IOT/CS/EC/ME/BT)/M. Tech (Int.)		
Subject Code- BNC0301/BNC0401	L - T - P 2 - 0 - 0	
Subject Name- Artificial Intelligence and Cyber Ethics	No. of hours- 30	

Pre-requisite of Subject: Basic understanding of computer systems and ethics.

Course Objective- The course aims to foster critical thinking about ethical issues, promote responsible use of technology, and ensure students can identify, analyze, and address ethical dilemmas in AI and cyber domains.

Course Outcome – After completion of this course students are able to:

- CO1 Learn key principles of AI ethics, summarizing ethical considerations and applications in AI development and deployment.
- **CO2-** Apply policies and framework for Fairness in AI and Machine Learning.
- CO3- Apply privacy and security concepts, risk management and regulatory compliance in the field of AI and Cyber Security.
- **CO4-** Understand the nature of cybercrimes, the principles of intellectual property rights (IPR), and the legal measures necessary to address and prevent these issues.
- **CO5-** Describe the impact of AI in Society, employment and workforce.

Course Content

Unit No	Module	Topics Covered	Pedagogy	Lecture Required (T=L+P)	Aligned Practical/Assi gnment/Lab	CO Mapping
1	An overview to AI Ethics	Definition of AI. Ethical principles in AI. Sources of AI data. Legal implications of AI security breaches, Privacy and AI regulations. Key Principles of responsible AI, transparency and accountability, Dual-use dilemma, Human-centric design. Introduction to Cyber	Lecture and Case studies	5	Assignment	CO1

		Laws and Ethics, Historical development of cyber laws, Legal frameworks.				
2	Fairness and Favoritism in Machine Learning	Introduction to Fairness and Bias in AI, Types of Fairness and Bias. Impact of Bias and Fairness in AI, techniques for measuring Fairness and Bias. Techniques for mitigating bias. Current policies and frameworks for fairness in AI. Bias in data collection, Fairness in data processing. Generative AI, Types of Bias in Generative AI.	Lecture and Case studies	6	Assignment	CO2
3	AI Ethics and Cybersecurity Principles	Importance of privacy and security in AI, AI specific security tools and software, privacy-preserving machine learning (PPML) and privacy-preserving data mining (PPDM) Ethical considerations in phases of AI development life cycle, Risk management: Risk assessment and incident response Regulatory compliance: GDPR, HIPAA Case studies: Implementation of AI ethics guidelines and best practices in engineering projects, Ethical decision-making processes and tools for engineers working with AI technologies	Lecture and Case studies	8	Assignment	CO3
4	Cybercrimes, IPR and Legal Measures	Types of cybercrimes and their impact, Legal measures for cybercrime prevention and prosecution. IPR: Copyrights, trademarks, patents, and trade secrets, Ethical implications of intellectual property, Cyber security and privacy issues	Lecture and Case studies	5	Assignment	CO4
5	AI Contribution to Social Evolution	Positive and negative political impacts of AI, Role of AI in social media and communication platforms, AI-generated content and deepfakes, Applications of AI in addressing global challenges, Key technical stakeholders in AI deployment: developers, researchers, policymakers, Technical Impacts on Employment and Workforce: Automation technologies: robotic process automation (RPA), autonomous systems	Lecture and Case studies	6	Assignment	CO5

References-

Text Books:

- 1. Introduction to Information Security and Cyber Laws, Simplified Chinese Edition by Surya Prakash Tripathi, Ritendra Goel, 1 January ,2014
- 2. AI ETHICS: Paving the Path for Responsible Machine Learning, Shivanand Kumar, 2014

Reference Books:

- 1. AI ETHICS (The MIT Press Essential Knowledge series), by Mark Coeckelbergh, 2018
- 2. Computers, Internet and New Technology Laws by Karnika Seth by Karnika

Links:

Unit 1 https://www.youtube.com/watch?v=VqFqWIqOB1g
Unit 2: https://www.youtube.com/watch?v=hVJqHgqF59A
Unit 3: https://www.youtube.com/watch?v=O5RX_T4Tg24
Unit 4: https://www.youtube.com/watch?v=RJZ0pxcZsSQ
Unit 5: https://www.youtube.com/watch?v=I9FOswjTSGg